

“MetamorphoSis of cultural Heritage Into augmented hypermedia assets For

enhanced accessibiliTy and inclusion”

This project has received funding from the European Union’s Horizon Europe 2021

research and innovation programme under the Grant Agreement No. 101060660

Ref. Ares(2024)1263525 - 19/02/2024

D5.1, System Architecture Page | 2

DOCUMENT INFO

Document ID: D5.1 - System architecture

Version date: 03/01/2024

Total number of pages: 110

Abstract: The document contains the project’s technical

requirements and proposes architecture for the

End-To-End Platform Architecture. It is the result

of task T5.1

Keywords SHIFT, software architecture, data mesh, peer-to-

peer, nodes, workspaces, artifacts, cultural

heritage.

AUTHORS

Name Organization Role

Iacob Crucianu SIMAVI Document maintainer

Krishna G.

Chandramouli

QMUL contributor

Anika Spiesberger UAU contributor

Dionyssos Kounadis-

Bastian

AUD contributor

George Margetis

Katerina Valakou

FORTH contributor

Philippos

Orphanoudakis

MDS contributor

REVIEWERS

Name Organization Role

Felix Burkhardt AUD reviewer

Martin Zamorano ERC reviewer

D5.1, System Architecture Page | 3

VERSION HISTORY

Version Description Date

0.1 1st complete draft 23/05/2023

0.2 Place in a new template 24/05/2023

0.3 QMUL Contribution to Module

Description

17/08/2023

0.4 AUD Contribution to Module

Description

17/08/2023

0.5 UAU Contribution to Module

Description

22/08/2023

0.6 FORTH Contribution to Module

Description

24/08/2023

0.7 MDS Contribution to Module

Description

28/09/2023

0.8 SIMAVI cross-check and

contribution to general chapters

28/09/2023

1.0 SIMAVI Close and send the final

version

30/09/2023

2.01 SIMAVI Treatment of the review

remarks related to the modules and

tools

27/12/2023

2.02 SIMAVI Treatment of the review

remarks related to use cases and

tools

29/12/2023

D5.1, System Architecture Page | 4

EXECUTIVE SUMMARY
We are defining the project’s technical requirements and proposing architecture

for the End-To-End Platform Architecture.

The work is based on the outputs of the other work packages, i.e. WP2, WP3, and

WP4. It uses the output of the deliverables D1.1 (SHIFT-D1.1, 2023) - SHIFT

requirements, user evaluation guidelines, and acceptance metrics and of the draft

deliverables (SHIFT-D2.1, 2023), (SHIFT-D3.1, 2023), (SHIFT-D3.2, 2023),

(SHIFT-D3.3, 2023), (SHIFT-D4.1, 2023).

The Concept defined for the End-To-End Platform Architecture is based on the

Data Mesh concept as it is defined in Chapter 4.2.

Data referring to the artifacts governed by the platform is placed in workspaces.

A workspace represents a subdomain of data and knowledge. The content of a

workspace is built by directly placing inputs, or by calling the software tools

available in the system. Each software tool is a collection of modules, working

together for the same business objective.

The implementation of the concept is proposed to be a distributed system around

a Peer-to-peer (P2P) network.

The main physical elements of the Platform backend are Nodes. A Node offers data

storage, processing, retrieval, validation, collaboration, governance, and

distribution functionality. Nodes can be added or removed at any moment from

the system. In the case of such operations, the fully distributed system is

synchronized automatically. Full Nodes operates all the software tools and can

work in standalone mode also. This offers a high availability of the system. All the

data or knowledge is exposed via APIs, presented at the level of each node. A

simple node contains references to data and indexes using hashes to data. It

needs access to full nodes to get all the data.

The document starts with the identification of the technical requirements,

according to the DOA (SHIFT Consortium, 2022), and continues with the analysis

of actual systems used in the field. After a presentation of the state of the art

defining complex architectures, we are using a 4+1 methodology, combined with

Data-Driven System Architecture (DDSA) pattern to define the proposed system

architecture.

The 4+1 views (Logical, Process, Physical, Development, Usecase) are applied to

data components to show different perspectives of a Data Product.

The architecture of the whole system is defined to allow the fulfillment of the

objectives of the project and validate this on the four use cases defined.

D5.1, System Architecture Page | 5

Table of Contents

EXECUTIVE SUMMARY .. 4

List of Figures ... 8

Abbreviations and Acronyms ... 9

1. Introduction ... 10

1.1. Scope .. 10

1.2. Structure of the report .. 10

2. Objectives .. 11

2.1. Ambition .. 11

2.2. Objectives .. 11

2.2.1. Scientific and Technical Objectives ... 11

2.2.2. Main technical requested characteristics 12

3. Methodology... 13

3.1. Defining software architecture methodology 13

3.2. View-based approach ... 13

3.2.1. State of the art ... 13

3.3. Architectural patterns ... 16

3.3.1. State of the art ... 16

3.4. Selected methodology .. 17

4. Approach ... 19

4.1. 4+1 Views and DDSA approach .. 19

4.1.1. Motivation .. 19

4.1.2. Usage ... 20

4.2. Data Mesh .. 20

4.2.1. Motivation .. 21

4.2.2. Usage ... 21

D5.1, System Architecture Page | 6

5. End-to-End Architecture definition .. 22

5.1. Overview .. 22

5.2. Synergies with other EU Horizon 2020 projects 23

5.2.1. Similarities in using the methodologies 24

5.2.2. Summary of similarities and differences 26

5.3. Requirements .. 27

5.3.1. Functional requirements ... 27

5.3.2. Non-functional requirements ... 30

5.4. Global architecture views .. 37

5.5. USE-CASE View ... 39

5.5.1. UC1- 19th to modern days Serbian paintings and modern art 39

5.5.2. UC2- Experimenting WITH the transformation of medicine and

pharmacy ... 40

5.5.3. UC3- Romanian history and customs explained to digital natives ... 40

5.5.4. UC4- CH exhibition as visitor’s journey’s, with no sensing boundaries

 41

5.5.5. Summary of tools proposed in all use cases. 41

5.5.6. Data inputs and outputs ... 43

5.5.7. Mapping of functional requirements on the tools......................... 44

5.6. Logical (Conceptual view) .. 47

5.7. Process View ... 55

5.7.1. Node management .. 56

5.7.2. Data and knowledge management ... 58

5.8. Physical View .. 69

5.8.1. List of all modules ... 69

5.8.2. Template used to describe the modules 70

5.8.3. M1-FOS Foreground/background object segmentation 71

5.8.4. M2-MOS PHYSICAL INFORMED MACHINE LEARNING ALGORITHMS

AND VIDEO GENERATION .. 72

5.8.5. M3-ASR Action sequence recognition within CH video repository ... 74

D5.1, System Architecture Page | 7

5.8.6. M4-NLP Comprehensive textual representation of assets based on NLP

approaches ... 76

5.8.7. M5-TEL Modelling Temporal Evolution of Language for Cultural Asset

Curation ... 77

5.8.8. M6-TVS Text and video-TO-speech production TOOL 78

5.8.9. M7-HAP Haptic techniques for 3D digital asset perception 80

5.8.10. M8-3DP Accessible framework of inclusive museum exhibits for 3D

digital asset perception ... 82

5.8.11. M9-FEX Cultural Asset Pre-processing and Feature Extraction for

Media Curation .. 84

5.8.12. M10-ASO Multimedia Cultural Asset Curation Based on Association by

Design 85

5.8.13. M11-DRM Digital Right Management .. 88

5.8.14. M12-PBK Main Platform, backend ... 89

5.8.15. M13-PFB Main platform client (Wallet) 91

5.8.16. M14-COM Communication and Integration Platform 92

5.8.17. MAPPING BETWEEN TOOLS AND MODULES 94

5.8.18. Nodes ... 96

5.8.19. Seed Node. .. 97

5.8.20. Data Storage .. 97

5.8.21. P2P ... 97

5.8.22. P2P Data Mesh ... 98

5.8.23. API ... 98

5.9. Development View ... 99

5.9.1. CI/CD ..100

5.9.2. Technologies ...101

5.9.3. Tools ..105

6. Conclusion ..107

References ..108

D5.1, System Architecture Page | 8

List of Figures
Figure 1. SHIFT conceptual building blocks .. 23
Figure 2. SHIFT architectural views .. 38
Figure 3. Actual IT environments ... 47
Figure 4. Proposed Logical Architecture ... 48
Figure 5. Node components .. 49
Figure 6. Detailed Node components .. 52
Figure 7. WEB Client for admin user ... 53
Figure 8. Client component ... 54
Figure 9. Process View ... 56
Figure 10. Node sequence diagram .. 57
Figure 11. Node synchronization process sequence diagram 58
Figure 12. T1-IV sequence diagram .. 61
Figure 13. T2-VS sequence diagram ... 62
Figure 14. T3-HA sequence diagram ... 63
Figure 15. T4-AN sequence diagram ... 64
Figure 16. T5-CT sequence diagram ... 65
Figure 17. T6-AF sequence diagram ... 66
Figure 18. T7-AT sequence diagram ... 67
Figure 19. Technology stack, full node .. 96
Figure 20. P2P data mesh ... 98
Figure 21. Node API ... 99
Figure 22. CI/CD ..100
Figure 23. Development and deployment flow ...101
Figure 24. Technology stack, development ...106

List of Tables
Table 1 SHIFT Functional requirements ... 27
Table 2 SHIFT Non-functional requirements ... 30
Table 3 SHIFT Non-functional requirements key metrics 34
Table 4 SHIFT Tools by Use Cases .. 42
Table 5 SHIFT Tools usage .. 43
Table 6 SHIFT Tools inputs/outputs .. 43
Table 7 SHIFT Functional requirements - Tools mapping 44
Table 8 SHIFT List of Modules .. 60
Table 9 SHIFT List of Modules by Owner. ... 69
Table 10 SHIFT Tools – Modules mapping .. 94

D5.1, System Architecture Page | 9

Abbreviations and Acronyms
ACRONYM DESCRIPTION

API Application Programming Interface

CI Continuous Integration

CPU Central Processing Unit

CRF Conditional Random Field.

D Deliverable

GUI Graphical User Interface

JEE Java Enterprise Edition

JSON JavaScript Object Notation

NoSQL Not only Structured Query Language

OS Operating System

OSD Object Storage Device

OT Operational Technology

RDBMS Relational Database Management System

RAM Random-Access Memory

RBN Radial Basis Network

RNN Recurrent Neural Networks

REST Representational state transfer

SIEM Security Information and Event Management

SSL Secure Sockets Layer

T Task

VM Virtual Machine

VPN Virtual Private Network

WP Work Package

D5.1, System Architecture Page | 10

1. Introduction

1.1. Scope
The present document contains the End-to-end Platform Architecture,

Specifications, and Development lifecycle with detailed component sub-

architectures that fully cover all the functionality of the SHIFT platform. The

document describes the proposed prototyping approach for designing the modular

SHIFT Platform. It is based on the user requirements specified in the User

Experience Stories and partner input. It will form the basis of the planning of the

development phase and will be updated using the results from the various

development iterations to come to a complete architectural design. It is intended

for review by members of the project, notably the system architects of the

development team. This design follows the Rapid Application Development (RAD)

/ rapid prototyping lifecycle.

The document explains how the proposed platform will deliver a set of

technological tools, loosely coupled that offers cultural heritage institutions the

necessary impetus to stimulate growth and embrace the latest innovations in

artificial intelligence, machine learning, multi-modal data processing, digital

content transformation methodologies, semantic representation, linguistic

analysis of historical records, and the use of haptics interfaces to effectively and

efficiently communicate new experiences to all citizens. (SHIFT Consortium, 2022)

1.2. Structure of the report
After this chapter (Introduction), the deliverable is organized as follows:

Chapter 2. Objectives. Presents how the objectives and the ambition of the project

are reflected in the technical specifications and the system architecture.

Chapter 3. Methodology. Presents the methodologies used to define the system

architecture. First, a study on possible choices is done. Next, based on the pros

and cons, the methodologies are selected. The selected methodologies are a

combination of 4+1 (Krunken) and Data-Driven System Architecture (DDSA).

Chapter 4. Approach. The main conceptual elements selected for the definition of

the architecture are presented. They include a description of the 4+1

methodology, the concepts of Data Mesh, Knowledge Mesh, and Distributed Data

and Knowledge Mesh (DDKM).

Chapter 5. End-to-End-Architecture definition. Presents the architecture of the

platform, using the five Views: Logical, Process, Physical, Development, and Use

Case. It is the most consistent part of the document as it reflects the platform as

it is planned to be developed and implemented.

D5.1, System Architecture Page | 11

2. Objectives
In the present chapter, we are presenting the objectives of the project from the

technical architecture perspective. We are analyzing existing solutions that cover

some of the elements defined for the SHIFT project, we are identifying the missing

elements, and we are proposing the main requirements and also the main

approach for the final product.

2.1. Ambition
Based on the DOA (SHIFT Consortium, 2022), the ambition of the project, is to

advance beyond the state-of-the-art in three directions:

• Improving accessibility.

• Improving social richness.

• Improving appeal.

2.2. Objectives
Based on the DOA (SHIFT Consortium, 2022) the objectives of the project are:

• Adoption of digital transformation strategy within cultural heritage

institutions

• Tools and algorithms to revitalize historical and cultural high-value content

• Enriching user experiences for interacting with cultural assets

• Enhance the preservation of historical archives using contemporary

language models

• Development of accessibility tools and methodologies in compliance with

international standards

• Implementation of inclusion by design methodologies

• Contribution to international standards to exchange metadata models with

cultural institutions and copyright protection of content ownership

• Dissemination and communication strategies for wider-scale adoption of

SHIFT results across cultural and creative industries

2.2.1.SCIENTIFIC AND TECHNICAL OBJECTIVES

The general objectives of the project are translated into technical objectives,

affecting the design of the system architecture, and referring to the inclusion in

the platform of:

• Computer vision tools and algorithms to revitalize historical and cultural

high-value content.

• Innovations in linguistic processing algorithms to enhance access and

representation of cultural content.

• Haptic interfaces for enriched user experience.

D5.1, System Architecture Page | 12

• Text-to-audio digital asset transformation methodologies for enriching the

user experience.

• An accessible framework of inclusive museum exhibits for 3D digital asset

perception.

• A semantic framework for long-term preservation of historical archives.

• Innovation in accessibility standards for interacting with cultural heritage.

All those tools will be accommodated in the platform and give value to the end

users.

2.2.2.MAIN TECHNICAL REQUESTED CHARACTERISTICS

Derived from the objectives of the project mentioned in DOA (SHIFT Consortium,

2022), and considering the ambition of the project presented in the previous

subchapter, we have derived several technical characteristics for the proposed

product of this project.

1. Data collection: The system should be able to collect data using an

adequate user interface, able to interact with users involved in the SHIFT

project.

2. Data storage and archiving: The system should be able to manage

different types of data, and models, collected and stored in a wide variety

of formats.

3. Data retrieval and discovery: Teams should be able to search for and

easily discover and access the data they need within the system.

4. Data audit and tracking: The system should provide tools for tracking the

origin and history of data, as well as any transformations or processes it

has undergone.

5. Data presentation: Adequate tools (Audio, Video, text) will be used for

data presentation, including haptic tools.

6. API access: The system should provide APIs for accessing and integrating

data from other sources and applications.

7. Decentralization: The Platform should allow the distribution in several

peer-to-peer nodes, and the teams are responsible for managing their

knowledge domains and are empowered to make decisions about how to

manage and share their data.

8. Domain ownership: In the Platform, each data domain is owned by a

specific team, which is responsible for managing the data within that

domain.

9. Standardization: The system should be developed to implement the

existing standards for data storage, retrieval, and distribution.

10.Data governance: The Platform should provide tools for managing data

quality, privacy, and security.

D5.1, System Architecture Page | 13

3. Methodology
In this chapter, we are presenting several methodologies available for defining the

software architecture of a system, and based on the specificity of SHIFT, we are

selecting the ones that best match our needs.

The methodology is based on the SIMAVI ISO 9001 certified methodology, which

includes procedures and work instructions.

For the completeness of the document and better understanding, we are including

here the methodological elements from SIMAVI documents (SIMAVI, 2021).

3.1. Defining software architecture methodology
In the last decades, several methodologies used to define the software

architecture for large systems were defined and used. We are using two categories

of such methodologies, defined on the object of definition.

The first category refers to Views and Perspectives. The second category refers to

architectural patterns. The categories mentioned here overlap, as they offer

different points of view on the same target: The software architecture.

3.2. View-based approach
The view-based approach to software architecture is a method for designing and

documenting the architecture of a software system by focusing on views of the

system and treating each view from different perspectives. It is a matrix treatment

of the architecture where each view provides a different representation of the

system as they are addressed by different stakeholders (users, developers,

engineers, managers, administrators). For each view, different perspectives are

addressed (for example security, availability, performance, etc.)

3.2.1.STATE OF THE ART

Several methodologies use a view-based approach to software architecture. Some

of the most popular ones include:

Kruchten 4+1 View Model: The Methodology was developed by Philippe

Kruchten (Kruchten, 1995). It uses five views as the 4+1:

“The 4+1 System Architecture Methodology is a software development approach

that provides a comprehensive view of a software system by describing it from

five different perspectives or views. The five views are:

1. Logical View: Describes the functionality of the system from a user's

perspective. It can be represented in UML with use cases, class diagrams,

and sequence diagrams.

2. Process View: Describes the concurrency and synchronization aspects of

the system. It can be represented in UML with activity diagrams and state-

transition diagrams.

D5.1, System Architecture Page | 14

3. Physical View: Describes the physical deployment of the system, including

hardware and network components. It can be represented in UML with

deployment diagrams, component diagrams, or network diagrams.

4. Development View: Describes the organization of the software

components and the development process. It can be represented in UML

with package diagrams and component diagrams.

5. Scenario View: Illustrates the system's behavior in specific scenarios or

situations. It can be represented in UML with use cases or activity diagrams.

“ (Kruchten, 1995)

Rational Unified Process (RUP) (Per Kroll, 2003): This methodology uses a set

of 4 views to describe the architecture of a software system. Apart from the others,

RUP is an iterative and incremental methodology that emphasizes the importance

of architecture-centric development.

“The views defined by RUP are:

1. Use Case View: This view describes the functional requirements of the

system from the perspective of its users. It can be represented in UML with

use case diagrams and scenarios that illustrate how the system is used to

accomplish specific tasks.

2. Logical View: This view describes the system's software architecture in

terms of its components, classes, and interfaces. It can be represented in

UML with class diagrams, object diagrams, and sequence diagrams that

illustrate how the system's components interact with each other.

3. Process View: This view describes the system's dynamic behavior in terms

of its processes and threads. It can be represented in UML with activity

diagrams and state diagrams that illustrate how the system processes data

and responds to events.

4. Physical View: This view describes the system's hardware and network

architecture in terms of its nodes and connections. It can be represented in

UML with deployment diagrams and component diagrams that illustrate how

the system's components are deployed and connected.

In addition to these four views, RUP also defines a fifth view called the

"implementation view" which describes how the system is implemented in terms

of its code, data structures, and algorithms. This view is not considered a separate

view in the 4+1 view model but is instead integrated into the other views.

“ (Per Kroll, 2003)

Viewpoints and Perspectives (V&P) (Nick Rozanski, 2005): This methodology

uses viewpoints to describe the architecture of a software system, where a

viewpoint is a set of conventions for constructing and interpreting views. V&P

emphasizes the importance of defining clear and concise viewpoints that are

tailored to the needs of the stakeholders

D5.1, System Architecture Page | 15

“

The following 7 viewpoints are defined:

1. Context viewpoint: Describes the relationships, dependencies, and

interactions between the system and its environment (the people, systems,

and external entities that it interacts with

2. Functional Viewpoint: Defines the system’s architecturally significant

functional elements, the responsibilities of each, the interfaces they offer,

and the dependencies between elements.

3. Information Viewpoint: Defines the structure of the system’s stored and

transient information (e.g. databases and message schemas) and how

related aspects such as information ownership, flow, currency, latency, and

retention will be addressed.

4. Concurrency Viewpoint: Defines the set of runtime system elements

(such as operating system processes) into which the system’s functional

elements are packaged.

5. Development Viewpoint: Defines any constraints on the software

development process that are required by the architecture. This includes

the system’s module organization, common processing that all modules

must implement, any required standardization of design, coding, and

testing, and the organization of the system’s code line.

6. Deployment Viewpoint: Defines the important characteristics of the

system’s operational deployment environment. This view includes the

details of the processing nodes that the system requires for its installation

(i.e. its runtime platform), the software dependencies on each node (such

as required libraries), and details of the underlying network that the system

will require.

7. Operational Viewpoint: Defines how the system will be installed into its

production environment, how data and users will be migrated to it, and how

it will be configured, managed, monitored, controlled, and supported once

this is achieved. The aim of the information in this view is to show how the

operational environment is to be created and maintained, rather than to

define detailed instructions or procedures.

The following perspectives are defined:

1. Performance and Scalability

2. Security

3. Availability and Resilience

4. Evolution

5. Accessibility

6. Internationalization

7. Regulation

8. Usability

“ (Nick Rozanski, 2005)

D5.1, System Architecture Page | 16

3.3. Architectural patterns
Architectural patterns are another way of organizing software architectures. It

focuses mainly on the components used by the architecture, viewed from an IT

perspective.

3.3.1.STATE OF THE ART

There are several architectural patterns for software architecture that are widely

used in the software industry (Richards, 2015). Some of the most popular ones

include:

“

Object-Oriented Analysis and Design (OOAD): This methodology focuses on

creating a software architecture by identifying the objects and their relationships

in a system, and then designing a solution around these objects.

Service-Oriented Architecture (SOA): This methodology focuses on creating a

system based on services, where each service is a self-contained unit of

functionality that can be reused across multiple applications.

Model-Driven Architecture (MDA): This methodology uses models to create a

software architecture, where the models are representations of the software

system at different levels of abstraction.

Agile Architecture: This methodology emphasizes the importance of

collaboration, feedback, and continuous improvement in software architecture

design. It advocates for an iterative and incremental approach to architecture,

where the architecture evolves over time based on the changing requirements of

the system.

Domain-Driven Design (DDD): This methodology focuses on creating a stop

architecture that is aligned with the business domain. It emphasizes the

importance of understanding the domain and modeling it in the software

architecture.

Event-Driven Architecture (EDA): This methodology focuses on creating a

system where the components communicate with each other by producing and

consuming events. It emphasizes the decoupling of components and the ability to

handle large volumes of events.

Data-Driven Software Architecture (DDSA): This methodology uses data

analysis and machine learning techniques to inform software architecture

decisions. DDSA involves collecting and analyzing data from various sources, such

as code repositories, issue trackers, and user feedback, to identify patterns and

trends that can inform architecture decisions.

“ (Richards, 2015)

D5.1, System Architecture Page | 17

3.4. Selected methodology
For SHIFT we have selected the View-based methodology Kruchten 4+1 View

Model, and for architectural pattern the Data-Driven Software Architecture

(DDSA):

Kruchten 4+1 View Model mainly focuses on the architecture and offers a clear

view for all stakeholders.

DDSA aims to provide objective data-driven insights into the performance and

quality of the software system, which can help architects make informed decisions

about trade-offs, such as between performance and maintainability. It can also

help identify areas of the system that may require refactoring or redesign.

DDSA is a relatively new approach and is still evolving. It requires specialized skills

in data analysis and machine learning, and there are currently limited tools and

frameworks available to support it. However, it has the potential to be a powerful

methodology for software architecture, particularly for large, complex systems

with significant amounts of data.

The main elements of DDSA include:

“

Data sources: DDSA relies on a variety of data sources to inform the architecture

design process. These data sources can include user feedback, system logs,

performance metrics, and other types of data that provide insights into how the

system is being used and where improvements can be made.

Data analysis: Once the data has been collected, it needs to be analyzed to identify

patterns, trends, and areas where improvements can be made. This analysis can

be done using a variety of techniques, including data mining, machine learning,

and statistical analysis.

Architecture design: Based on the insights gained from the data analysis, the

software architecture can be designed or refined. The design process should take

into account the specific needs and requirements of the system, as well as any

constraints or limitations that may be present.

Implementation: Once the architecture design is complete, the system can be

implemented using standard software development techniques. The

implementation should be guided by the architecture design but can also be

informed by ongoing data analysis and user feedback.

Monitoring and feedback: Finally, DDSA requires ongoing monitoring of the system

and user feedback to ensure that it continues to meet the needs of its users. This

feedback can be used to inform further data analysis and architecture refinement,

creating a continuous feedback loop that improves the system over time.

Overall, the main elements of DDSA are focused on using data to inform every

step of the software architecture design process, from initial analysis to ongoing

D5.1, System Architecture Page | 18

monitoring and feedback. By using data in this way, DDSA can help to create

software systems that are more effective, efficient, and user-friendly.

“ (Richards, 2015)

A detailed description and motivation of the two selected methodologies are

contained in the next chapter.

D5.1, System Architecture Page | 19

4. Approach
In this chapter, we explain the methodologies and the elements used for the

definition of the system architecture.

First, an explanation and motivation for the methodologies used are presented.

Then the main elements defining the final product are explained.

4.1. 4+1 Views and DDSA approach
For the definition of the architecture, we are using the 4+1 methodology applied

to create a Data-Driven Software Architecture.

That means, that the same Data Driven architecture will be presented from 5

(4+1) stakeholders’ perspective.

The central focus is on a data product as the main elements for this system refer

to a large quantity of data, managed, processed, and delivered for final users.

In fact, it will be a data representation, explained from 5 points of view.

4.1.1.MOTIVATION

The selection of the 4+1 methodology is explained by some elements specific to

this methodology, which better fits the objectives and the requirements of the

project. They include:

Focus: The 4+1 view model is primarily focused on software architecture, while

RUP is a more comprehensive methodology that covers all aspects of software

development, including project management, requirements gathering, testing,

and deployment.

Simplicity: The 4+1 view model defines five views (logical, process, physical,

development, and use case), which are more concise and easier to understand.

Sequence: The 4+1 view model places more emphasis on the use case view and

considers it to be the central view, while RUP places more emphasis on the logical

view and considers it to be the foundation for the other views.

Formality: The 4+1 view model is a more formal methodology that uses UML

diagrams to represent the views of the system. V&P is a less formal methodology

that can use a variety of techniques to communicate the architecture, including

diagrams, narratives, and prototypes.

Usage: The 4+1 view model is a very well-known methodology, with proven

results in the last decades.

The selection of DDSA comes from the fact that our target is to design a data-

intensive system (Kleppmann, 2017) where:

1. The target product is a Distributed Data Repository. Data is the central part,

and it will drive the architecture.

D5.1, System Architecture Page | 20

2. The objectives of the data repository are to have complex data structures,

large amounts of data to process, and complex data flows manage complex

data structures, large amounts of data to process, and complex data flows.

3. The value of the system comes from the value of data and knowledge

exposed. Data is processed and finally, knowledge is available to the users.

4.1.2.USAGE

The 4+1 methodology is used to present the proposed architecture for the SHIFT

platform.

4.2. Data Mesh

The term DATA MESH was coined by Zhamak Dehghani in 2019 (Dehghani, 2022)

(Data-Mesh-General, 2023) and is based on four fundamental principles that

bundle well-known concepts:

“The domain ownership principle mandates the domain teams to take responsibility

for their data. According to this principle, analytical data should be composed

around domains, similar to the team boundaries aligning with the system’s

bounded context. Following the domain-driven distributed architecture, analytical

and operational data ownership is moved to the domain teams, away from the

central data team.

The data as a product principle projects a product thinking philosophy onto

analytical data. This principle means that there are consumers for the data beyond

the domain. The domain team is responsible for satisfying the needs of other

domains by providing high-quality data. Basically, domain data should be treated

as any other public API.

The idea behind the self-serve data infrastructure platform is to adopt platform

thinking to data infrastructure. A dedicated data platform team provides domain-

agnostic functionality, tools, and systems to build, execute, and maintain

interoperable data products for all domains. With its platform, the data platform

team enables domain teams to seamlessly consume and create data products.

The federated governance principle achieves interoperability of all data products

through standardization, which is promoted through the whole data mesh by the

governance group. The main goal of federated governance is to create a data

ecosystem with adherence to the organizational rules and industry regulations.”

The MESH emerges when teams use other domains' data products. Using data

from upstream domains simplifies data references and lookups (such as getting a

new image), while data from downstream domains enables analyzing effects, e.g.

for A/B tests (such as changes in the formulas). Data from multiple other domains

can be aggregated to build comprehensive reports and new data products.

Data mesh, at its core, is founded on decentralization and distribution of

responsibility to people who are closest to the data to support continuous change

https://martinfowler.com/articles/data-mesh-principles.html

D5.1, System Architecture Page | 21

and scalability. The components here are made of data, its metadata, and

the computation necessary to serve it.

“ (Data-Mesh-General, 2023)

4.2.1.MOTIVATION

SHIFT requirements fit very well with Data Mesh as defined above.

First, it is a data-intensive platform. That involves “data as product”. Next, there

are subdomains very well defined, where the domain ownership is precisely

known. As presented in the objectives and ambition, the platform should deliver

information and knowledge for a wide area of users, which are collaborating in

creating, and consuming data products. This involves a self-serve data

infrastructure platform.

And finally, federated governance is necessary to have an ecosystem created in a

standardized form.

4.2.2.USAGE

The domain ownership will be implemented by defining workspaces for subdomains

of data in cultural heritage institutions. A workspace is a group of data, processes,

and knowledge targeted to a specific scope.

The data as a product principle is reflected in choosing data nodes as the main

building block of the system and placing them in a P2P network.

The self-serve data infrastructure platform is proposed to be a P2P network, with

data and knowledge nodes, each one exposing APIs for access.

The federated governance principle is reflected in the definition of standard APIs to

access data from different data nodes, all equal in a P2P network.

In the same P2P network used for Data Mesh, there will be nodes containing the

data and data accessing graphs.

D5.1, System Architecture Page | 22

5. End-to-End Architecture definition

5.1. Overview
We are presenting in this chapter the end-to-end architecture of the platform.

It is a distributed system that is fully horizontally scalable and has specific front-

end components. Data can be stored on several nodes or all nodes.

It will use a mechanism to retrieve data on a node, from any node of the system,

fully transparent to the user.

It will permit data synchronization between nodes but without a consensus. That

means that it is possible to have, for a short period (a few minutes), nodes with

fewer data than others, and provide information at the time of interrogation, and

the synchronization be done after the interrogation. Also, there are no parallel

processes that try to update nodes and proceed only if they gain consensus to

access a resource.

Even more, not all data is necessary to be synchronized.

There are elements fully synchronized, (index and hash), and based on the

synchronized elements, it will be possible the data retrieval from any nodes.

There is common information presented in each node. This is summary

information of all nodes. Also, each node is implementing the visualization and

presentation tools developed in the project.

The core of the system is a backend distributed environment that offers the

functionality for accessing and presenting artifacts.

Access to data, and visualization, is possible by using the client (Art wallet) which

can be a haptic tool.

First, a general description and a global presentation of the 4+1 view are included.

Next, each of the views is applied and the details of the architecture are presented.

The conceptual building blocks as they are described in DOA, where the starting

point of our logical architecture. They are presented in the next figure (Figure 1.

SHIFT conceptual building blocks)

D5.1, System Architecture Page | 23

Figure 1. SHIFT conceptual building blocks

5.2. Synergies with other EU Horizon 2020 projects
The definition of the architecture for the present project was created in the context

of developing R&D projects, under Horizon 2020, and having as one of the

objectives the creation of a repository for some specific data.

The projects which were found to have more similarities were MES-CoBRaD1 and

MatCHMaker2

We presented in the next subchapters where the similarities of the projects

generated synergies, and where each project followed a different branch.

1 Multidisciplinary Expert System for the Assessment & Management of Complex Brain Disorders-

GA 965422

2 HORIZON-CL4-2022-RESILIENCE-01-19: Advanced materials modelling and characterization-GA

101091687

D5.1, System Architecture Page | 24

5.2.1.SIMILARITIES IN USING THE METHODOLOGIES

The global methodology used to create the architecture is 4+1 for all the three

mentioned projects. This methodology fits the needs of all projects, as described

in Chapter 4.1.1: Motivation and expressed in terms of:

• Focus

• Simplicity

• Sequence

• Formality

• Usage

Considering that the same methodology is used, the 5 (4+1) views are present in

each architecture, and this involved similar drawings of the global views and

corresponding placement of specific objects in each architecture.

All the three mentioned projects have as an objective the treatment of a large and

heterogenous amount of data, placed in many places. The specific treatment

considered the usage of some specific concepts and architectural patterns.

1. In MES-CoBRaD (MES-CoBraD, 2021), a central Data Lake is used to store

metadata and anonymized data, and distributed Edge components are used

to store sensitive data. There are links between edge and central Data Lake,

but no links between Edge components.

For this reason, a centralized data management mechanism was created,

having at the center the Data Lake, and as dependent elements the Edge

components.

2. In MatCHMaker (MatCHMaker, 2023) data is distributed in several places,

and they are equal in what they allow to process. Data refers to models,

metadata, algorithms, raw data. For this reason, the concept of Distributed

Data and Knowledge Mesh (DDKM) is used. The DDKM concept is

implemented in a distributed environment with equal nodes, each node

containing models, implemented algorithms, metadata, or data. Each node

can connect and exchange data with any other node. Nodes are almost all

the time synchronized.

Access to data is possible through a client, which can present data stored

in any place of the distributed environment but indexed in the synchronized

nodes. If necessary, calls to models or algorithms are possible.

3. In SHIFT data is distributed in several places. Each distributed node has its

own processing system (which is different from MatCHMaker, where

uniform processing is in place) Data refers to a different format of data

describing artefacts. The data referring to artefacts is grouped in

workspaces (specific to an exhibition). For this type of data, the concept of

D5.1, System Architecture Page | 25

Distributed Data Mesh (DDM) is used. The main difference in the concepts

refers to the lack of K(Knowledge), as there are no models or algorithms

placed in a node. The DDM concept is implemented in a distributed

environment with equal nodes, each node containing data, metadata, or

links to data. Each node can connect and exchange data with any other

node. Nodes are almost all the time synchronized.

Access to data is possible through a client, which is able to present data

stored in any place of the distributed environment but indexed in the

synchronized nodes. In each node we can call specific tools to process data

and create new data which is added to the workspace.

Based on the description of the data storage and processing requirements we

found that:

A. The concepts used in MES-CoBRaD do not fit the requirements of SHIFT,

so, they are not used.

B. A part of the concepts used in MatCHMaker are useful also for SHIFT, and

the development in parallel enriches both projects.

The common elements identified and used refers to:

1. Usage of Data Mesh concept as the base of development. At the basis there

is Data Mesh, but MatCHMaker will develop further the Knowledge Mesh,

not present in SHIFT.

2. Both systems will develop and deploy a P2P (Peer to Peer) network. This

involves the placement of equal nodes with links between all of them. This

has a similar drawing representation, and similar functionalities, including:

a. Seed node

b. Discovery of nodes

c. Synchronization of nodes

3. The functionalities of nodes are described in the architecture as Horizontal

data exchange, are similar in the two projects and have similar drawing

representation, similar sequence diagrams, and similar APIs use to

command action in nodes.

4. The content of nodes has similar parts as different components. The similar

parts refer to:

a. Metadata

b. Organization (Usage of Merkle Trees) to compact information

c. Data used for the discovery and synchronization mechanism.

The content which differs, and is specific only to Shift are:

a. Storage of tools and modules

b. The storage for workspaces

c. Mechanism to use workspaces.

5. The way data in a node is placed and used is different.

D5.1, System Architecture Page | 26

If in MatCHMaker the data is selected from an existing open repository, and

links are created in the node to access the data, in SHIFT the process is

more complex and involves:

• Management of workspaces (created to represent exhibitions).

• Add data (pictures, text, video, etc.) to workspaces.

• Call tools on a workspace to produce new data and place it in the

workspace (for example call text to speech on a text, and place the

resulted audio on the same workspace)

• Final user access to workspaces.

For this reason, the whole vertical data exchange is different in MatCHMaker

and SHIFT and is developed on different branches.

6. The clients proposed are different. Both MatCHMaker and SHIFT are

proposing WEB and text clients. But the content of what they are getting or

displaying is completely different, since the vertical process is different. For

example, MatCHMaker will be able to open a link to open repository where

the user interacts, while in SHIFT the user can create workspaces, upload

data, call modules, place the result of modules in workspaces.

5.2.2. SUMMARY OF SIMILARITIES AND DIFFERENCES

5.2.2.1. SIMILARITIES

• 4+1 methodology is used for all projects mentioned, and the views

representation have similarities.

• Data Mesh concept is used in MatCHMaker and SHIFT

• P2P network is used in MatCHMaker and SHIFT

• Horizontal data exchange between nodes is similar in MatCHMaker and

SHIFT (seed, discovery, synchronization)

5.2.2.2. DIFFERENCIES

• Knowledge Mesh concept is not used in SHIFT.

• SHIFT implements the concept of Workspaces.

• SHIFT implements functionalities to add data in Workspaces.

• SHIFT implements functionalities to call tools and create new data in

workspaces.

• The whole vertical processing is completely different in SHIFT and

MatCHMaker.

• Clients in SHIFT are specialized in displaying artefacts and are completely

different from those implemented in MatCHMaker.

D5.1, System Architecture Page | 27

5.3. Requirements
The definitions of the user requirements are extensively presented in D1.1 (SHIFT-

D1.1, 2023). We are summarizing here the functional requirements extracted from

the user requirements, and we are introducing the non-functional (technical

requirements).

MoSCoW prioritization is specified for each requirement (functional or technical).

The requirements considered are an important driver for the definition of the

system architecture.

5.3.1.FUNCTIONAL REQUIREMENTS

The functional requirements are based on the user requirements defined in D1.1

(SHIFT-D1.1, 2023).

The functional requirements are addressed to different end users.

The end users considered are grouped into 4 categories:

EU1-CH Professional

EU2-VI Visually impaired user

EU3-BL Blind user

EU4-HI Hearing impaired user

For each functional requirement, the MoSCoW prioritization is also included.

In summary, the functional requirements are mentioned in the next table:

Table 1 SHIFT Functional requirements

Code Description End

Users

MoSCoW

FR1-VC Visual contrast: For good visual

perception, adjacent surfaces should

differ not only in color but also in shade.

For people with partial or total color

blindness, this light/dark contrast is

extremely important.

EU2-VI M

FR2-VC Visual contrast: Matching or similar

colors, such as light blue and dark blue

or light green and dark green, should

therefore be avoided.

EU2-VI S

FR3-VC Visual contrast: The color combination

red/green is completely unsuitable

EU2-VI S

D5.1, System Architecture Page | 28

(approx. 9% of the population suffer

from red-green color blindness).

FR4-PA Picture to animation transformation EU1-CH M

FR5-TS Text to Speech transformation. EU1-CH,

EU2-VI,

EU3-BL

M

FR6-EC Image and video processing by

enhancing the contrast of the visual

content.

EU1-CH,

EU2-VI

M

FR7-UF User-friendly access to various

approaches and perspectives regarding

CH artifacts, with the possibility of

sorting, filtering, labeling, and

classification is the most important

benefit of a technology-assisted system

for curating efficiency.

EU1-CH,

EU2-VI,

EU4-HI

M

FR8-FS Facilitating access to various digitized

CH resources (publications, studies,

collections, catalogs, exhibitions, virtual

tours, audio-video materials, etc.)

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

S

FR9-MC Multimedia content: images, videos,

podcasts, and other multimedia

formats, which the IT system can sort,

metadata, and classify according to the

topics relevant to the end users’

preferences.

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

M

FR10-VG Virtual Guides: An artificial intelligence

assistant could be programmed to

provide information about exhibits and

events, as well as answer user

questions.

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

S

FR11-DR Digital representation of objects to

watch on visitor's devices (like tablets):

to magnify images, highlight details,

strengthen contrasts, to delete details;

this could help partially sighted persons

or persons with motoric problems.

EU1-CH,

EU2-VI,

EU4-HI

S

FR12-AG An automatic guide system that

composes special tours in the collection

of objects related to children, gender

EU1-CH,

EU2-VI,

C

D5.1, System Architecture Page | 29

equality, ethnic aspects, disabilities,

etc.

EU3-BL,

EU4-HI

FR13-AC Accessibility: the possibility of access to

cultural heritage information in a

variety of formats, including text,

images, and media, through an intuitive

and personalized interface. AI-assisted

computer systems could provide

accessibility through advanced search

tools and recommendation algorithms.

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

S

FR14-IA Interface accessibility: the system can

be used easily by all users as a priority,

including disabled people

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

M

FR15-VI Using a clear and intuitive navigation

menu adapted to the visually impaired.

EU1-CH,

EU2-VI

M

FR16-FO Using an appropriate font to facilitate

reading for people with low vision.

EU1-CH,

EU2-VI

M

FR17-SC Suitability of the CH content to the

cultural diversity of the users

EU1-CH S

FR18-DS Information and components of the IT

system should be delivered to users in

ways that they can receive and

understand correctly regardless of any

disabilities or physical limitations they

may encounter.

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

M

FR19-ST Stories that present oral or traditional

histories collected from local

communities.

EU1-CH,

EU4-HI

M

FR20-VT Stories like virtual tours that provide

information about the cultural heritage

of an area, heritage buildings,

museums, libraries, archives, etc.

EU1-CH,

EU2-VI,

EU3-BL,

EU4-HI

M

FR21-AR Stories representing descriptions of

tangible (photographs, works of art,

monuments, etc.) and intangible

(landscapes, attributes

/approaches/songs, etc.) CH items.

EU1-CH,

EU2-VI,

EU3-BL

S

D5.1, System Architecture Page | 30

FR22-EM Stories that increase the emotional

impact of CH digital content by
integrating musical compositions or
suggestive images.

EU1-CH

FR23-HA Translation of physical objects to digital
objects and uses haptics to “feel” the

objects. Implement haptic interaction
with 3D digital tangible and intangible

cultural heritage assets, augmenting
the user experience (UX) with new
interaction paradigms that can be used

in situ or remotely

EU1-CH,

EU2-VI,

EU3-BL

M

FR24-AS It should be possible to ask for
assistance

EU2-VI,

EU3-BL,

EU4-HI

M

FR25-MM Multimodality of engagement or

alternative formats

EU2-VI,

EU3-BL,

EU4-HI

M

5.3.2.NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements refer to the general technical requirements proposed

for all modules, to conduct a coherent system deployment, able to respond to the

user needs presented in D1.1 (SHIFT-D1.1, 2023).

Non-functional requirements are included in the next table:

Table 2 SHIFT Non-functional requirements

ID Category / Requirement MoSCoW

NFR System Requirements

NFR-001 Support high-availability
requirements

SHIFT must support high-
availability requirements,
operating without outages

within working hours.

M

NFR-002 Support backup and

recovery operations

SHIFT must support copying and

archiving data for restoring the
original after a data loss event.

Backups should be programmed
outside working hours.

M

NFR-003 Support both horizontal
and vertical scalability
scenarios

SHIFT must support both
horizontal and vertical
scalability for capacity

expansion scenarios. This

M

D5.1, System Architecture Page | 31

should be realized using a

distributed approach.

NFR-004 Support agreed on

workload and response
time performance
requirements

SHIFT must support agreed

workload and response time
performance requirements
guaranteeing operation within

considered time limits.

M

NFR-005 Allow working on

different hardware
platforms (x64

compatible)

SHIFT must be designed to allow

running server-side services on
Linux and Windows hardware

platforms (x64 compatible).

M

NFR-006 Support virtualization

options for hardware
resources

SHIFT must support

virtualization options for
hardware resources to allow
optimal use of existing capacity,

within budget constraints.

M

NFR-007 Support cloud

deployments

SHIFT must support

deployments in the cloud.

GUI Graphical User Interface Requirements

NFR-008 Provide a common look-
and-feel to the graphical

user interface

SHIFT must provide a common
look-and-feel through a portal-

like user interface to guide the
user to the underlying
functionality of the internal

components. The look-and feel
should be similar for different

devices (Desktop, mobile, etc.).

M

NFR-009 Provide intuitive general

navigation methods

SHIFT must provide intuitive

general navigation methods. At
least two of the following
navigation methods should be

provided: main menu, site map,
and search engine.

Breadcrumbs must be used to
indicate the current feature and

to provide easy hierarchical
navigation.
Ona scrolled page should be

used for large content.

M

NFR-010 Use unambiguous text to

describe features

Text used for the SHIFT’s user

interface should be
unambiguous. Typefaces and

fonts used should be easily
readable and should support
international accents. Where

symbols are used consider
associating descriptive text as

well. Beware of cultural

M

D5.1, System Architecture Page | 32

differences related to naming

and symbols.

NFR-011 Support localized texts

for international end-
users

SHIFT must support localized

texts for international end-
users, by using Unicode
compliance for global text

display, independent from a
specific language/character set

encoding, while also supporting
right-to-left languages.

M

NFR-012 Use appropriate colors
and contrast

SHIFT must use appropriate
colors and contrast, avoiding
conveying meaning by color, as

there may be cultural
differences in interpreting colors

between users of the system
while making sure that
information is comprehensible,

even if the colors are absent.

S

NFR-013 Provide consistent labels

for buttons and fields

SHIFT must provide consistent

labels for buttons and fields. An
explicit label must be provided

for each form field. Each label
must be placed close to the field
to which it is attached. Group

together related fields. Indicate
mandatory fields and provide

help for entering data.

S

NFR-014 Indicate the size and

format of documents
available for download

SHIFT must indicate the size and

format of each document that
can be downloaded. For each
link that points to a document

that can be downloaded, the link
text should include the

document name, file format,
and size.

S

NFR-015 Provide account
authentication interface
for user identification

SHIFT must provide a graphical
interface for authenticating end-
users. Reset password or

request user account should be
provided.

M

NFR-016 Provide adaptive user
interface based on

authorization access
rights

SHIFT must provide an adaptive
user interface based on the

authorization access rights of
the user role, such as displaying
only links/menus to activities

and resources to which the user
has access.

M

D5.1, System Architecture Page | 33

NFR-017 Provide accessibility

options (as mentioned in
functional requirements)

SHIFT must provide user

interfaces adapted to different

users considered the four

groups:

EU1-CH professional

EU2-VI Visually impaired user

EU3-BL Blind user

EU4-HI Hearing impaired

INT Interoperability Requirements

NFR-018 Integrate components
and external systems in a

loosely coupled way

SHIFT must integrate internal
components and external

systems in a loosely coupled
way; such that each of its
components has, or makes use

of, little or no knowledge of the
definitions of other separate

components.

M

NFR-019 System components

expose and consume
data in a standardized
way

SHIFT components must expose

and consume data in a
standardized way. (MIME
format, JSON packaged)

M

NFR-020 Publish and describe
exposed interfaces

towards other systems

SHIFT must publish and describe
exposed interfaces towards

other systems by managing a
set of open APIs towards other

systems, used both to develop
the actual SHIFT system and to
extend the system in the future

if needed.

M

NFR-021 Describe the syntax and

format used for data
exchange messages

SHIFT must describe the syntax

and format used for data
exchange messages, while also

specifying the semantics of data
fields. Standardization of
messages ensures that

messages are robust,
interoperable, and reusable.

M

NFR-022 Leverage open standards
to communicate with

external systems

SHIFT must leverage open
standards, where available, to

communicate with external
systems, as opposed to
implementing custom means of

data exchange.

S

D5.1, System Architecture Page | 34

5.3.2.1. KEY METRICS

For all the non-functioning requirements we Are proposing a set of key metrics to

express the “definition of done” for each one.

This is presented in the next table:

Table 3 SHIFT Non-functional requirements key metrics

ID
Category /

Requirement
 Value

NFR System Requirements Key metrics

NFR-001 Support high-
availability

requirements

Availability during working
hours in a week measured

as AVW=Time of
availability/Total time

working hours

AVW>99.5%

NFR-002 Support backup and

recovery operations

Percent of data coverage

by backups (COV)
Tine for full recovery (TFR)
of 100 Gb data

COV=100%

TFR < 20 Min

NFR-003 Support both horizontal
and vertical scalability

scenarios

Vertical scalability (VSCA).
= Percent of CPU and

memory that can be added
to improve performance

Above this percent there
will be no improvements.
Tests using Jmeter.

Horizontal scalability
(HSCA) = Maximum

number of nodes for which
the system is manageable
using the same distribution

mechanism.
Tests using Jmeter.

VSCA>100%
HSCA>100.

NFR-004 Support agreed on
workload and response

time performance
requirements

The volume of data on a
node (VDN) is measured

as available space on node
storage.
Answer time for simple

page display measured in
browser developer tools

(Networking)
Waiting for the Server to
response (WSR)

Page Content Download
(PCD)

VDN>100G
WSR<0.3s

PCD<1s

D5.1, System Architecture Page | 35

NFR-005 Allow working on

different hardware
platforms (x64
compatible)

Support Linux and

Windows platforms
measured as installation
and working with success

>=1 Linux

nodes
>=1
Windows

nodes

NFR-006 Support virtualization

options for hardware
resources

Support VMWare or Oracle

VM VirtualBox.
Tested by creating virtual

machines on the two
virtualization
environments

>=1

VMWare
nodes

>=1
VirtualBox
nodes

NFR-007 Support cloud
deployments

Support cloud AWS,
AZURE.

Testing by deploying nodes
in the two cloud

environments

>=1 AWS
nodes

>=1 AZURE
nodes

GUI Graphical User Interface Requirements

NFR-008 Provide a common look-
and-feel to the

graphical user interface

Usage of one CSS for all
modules in web

applications.
Use the same theme for all
the other applications

(Compliant with ISO 9241)

1 CSS
1 Theme

NFR-009 Provide intuitive general

navigation methods

Number of clicks to reach

any business function
NCLI.

(Compliant with ISO 9241)

NCLI <=4

NFR-010 Use unambiguous text

to describe features

Test how users understand

the features without
training (UXFNT) and after
training (UXFAT)

Measured the percentage
of failures.

(Compliant with ISO 9241)

UXFNT

<10%
UXFAT<2%

NFR-011 Support localized texts

for international end-
users

Languages supported:

English
Hungarian
Romanian

Serbian
German

5 languages

supported

NFR-012 Use appropriate colors

and contrast

(Compliant with ISO 9241)

Test how users understand
the colors (including users
with disabilities. Measure

the failure color
identification rate (FCR)

FCR<=10%

D5.1, System Architecture Page | 36

NFR-013 Provide consistent

labels for buttons and
fields

Test how users understand

the features without
training (UXFNT) and after
training (UXFAT)

Measured the percentage
of failures.

(Compliant with ISO 9241)

UXFNT

<10%
UXFAT<2%

NFR-014 Indicate the size and

format of documents
available for download

Presence of document size

to be downloaded. (PDS)

PDS=100%

NFR-015 Provide account
authentication interface
for user identification

Possibility to access
without authentication
(FREEACC)

FREEACC=0

NFR-016 Provide adaptive user
interface based on

authorization access
rights

Number of roles and
different UIs.
EU1-CH professional

EU2-VI Visually impaired

user

EU3-BL Blind user

EU4-HI Hearing impaired

ADMIN

NROL=5

NFR-017 Provide accessibility

options (as mentioned
in functional

requirements)

Accessibility for:
EU2-VI Visually impaired

user

EU3-BL Blind user

EU4-HI Hearing impaired

3

accessibility
roles

INT Interoperability

NFR-018 Integrate components

and external systems in
a loosely coupled way

Loosely coupled indicator

(LCI=Number of modules
uncoupled/no total
modules) * 100

LCI>70%

NFR-019 System components
expose and consume

data in a standardized
way

Data Formats Used to
exchange data (DFU)

JSON, XML, CSV, Binary

DFU<=4

NFR-020 Publish and describe
exposed interfaces

towards other systems

Percentage of documented
exposed interfaces over all

interfaces (DEI)

DEI=100%

NFR-021 Describe the syntax and

format used for data
exchange messages

Percentage of documented

data exchange messages
from all messages (DEM)

DEM=100%

D5.1, System Architecture Page | 37

NFR-022 Leverage open

standards to
communicate with
external systems

Percentage of open

standards over all
standards (POS)

POS=100%

5.4. Global architecture views
Considering the methodologies selected, the global view of the whole system is

that of the main concept: Distributed Data and Knowledge Mesh, viewed

(illuminated) by the 4+1 views: Logical, process, physical, and Development, plus

the central one: use case.

We will present separate views of the main concept in the next subchapters.

D5.1, System Architecture Page | 38

Figure 2. SHIFT architectural views

D5.1, System Architecture Page | 39

5.5. USE-CASE View
We are presenting in this chapter the user point of view on the system, expressed

in the description of use cases and detailed in user requirements D1.1 (SHIFT-

D1.1, 2023).

Four use cases are considered and are described in the following subchapters.

5.5.1.UC1- 19TH TO MODERN DAYS SERBIAN PAINTINGS AND MODERN

ART

According to the DOA (SHIFT Consortium, 2022), this use case is described as:

“The exhibition aims to augment the experience of visitors with an exhibition

focused on the most significant 19th-century and contemporary Serbian paintings

using innovative tools. The beauty of still images (paintings or photos) is not easily

appreciated by regular visitors and short video clips will improve the social

richness of the cultural assets. On top of this, for people with visual impairments,

we’ll provide ‘audio captioning’ for the short videos.

Also, museum curators will have better support in organizing the exhibition

layout/objects in a culturally significant order, with contemporary references.

The situation is similar in other member museums of The Balkan Museum Network,

and from other countries, as well.

SHIFT will become an essential service and mechanism for The Balkan Museum

Network Groups to increase access by “modernizing” and being more up to date

with a new and intense solution that creates excitement among visitors.”

Based on D1.1 (SHIFT-D1.1, 2023), the use case will prepare an exhibition “based

on the selection of paintings, drawings, graphics, icons, posters, and photos from

the artistic collection of the museum. The working title of the exhibition will be

“Pictures speak”. Using digital content and tools will provide the possibility to bring

two-dimensional objects, such as paintings, to life. Each object will have an audio

description explaining the art works, or recorded narration about the person or

event/place presented, customs, and objects combined with digital tools and

effects such as 3D animation, and AR/VR elements, providing multimodal and

multisensory access to the collection, etc. The added value of the selected

approach is that it provides access and inclusion to the collection, not only for one

target group, but for all, and improves the quality of museum programs, services,

and work, in general.”

This will be achieved by revitalizing existing CH, through testing the following tools

(as mentioned in D1.1 (SHIFT-D1.1, 2023)):

“

• Tool to enhance Photos / Paintings to Short Videos

• Audio tool – “Video to Speech” capable of interpreting visual stimuli (e.g.,

actions explained in visual sequences)

D5.1, System Architecture Page | 40

• Tool to “Text to Speech” that automatically can provide complementary

information regarding the cultural heritage assets (books, paintings,

photos)

• Tool that translates historical meaning into more contemporary language

and for auto-tagging/ auto-categorization of cultural heritage resources.

• Events/presentations/workshops that will serve as pilot testing of
proposed and possible outcomes.

•

“

5.5.2.UC2- EXPERIMENTING WITH THE TRANSFORMATION OF MEDICINE

AND PHARMACY

According to the DOA (SHIFT Consortium, 2022), this use case is described as:

“This exhibition aims to emerge the visitors into the history of medicine and let

them “feel” how different illnesses have been treated before modern times. This

will be achieved using several tools within the project, haptics being among them.

To achieve this objective, this pilot exhibition will test the following tools:

• Tool to enhance Photos / Paintings to Short Videos

• Audio tool – “Video to Speech” capable of interpreting visual stimuli (e.g.,

actions explained in visual sequences)

• Tool that translates physical objects to digital objects and uses haptics to

“feel” the objects. To implement haptic interaction with 3D digital tangible

and intangible cultural heritage assets, augmenting the user experience

(UX) with new interaction paradigms that can be used in situ or remotely

• Tool that translates historical meaning into more contemporary language

and for auto-tagging/ auto-categorization of cultural heritage resources

“

5.5.3.UC3- ROMANIAN HISTORY AND CUSTOMS EXPLAINED TO DIGITAL

NATIVES

According to the DOA (SHIFT Consortium, 2022), this use case is described as:

“This pilot aims to support and engage at least 10 member libraries to revitalize

their book collections presentations and descriptions, to boost the interest also for

the digital native generation of European citizens. Member libraries will also be

engaged in a contest to raise interest and will encourage citizens, through social

media, to share their collection of historical photos to create short motion videos.

To achieve this objective, within this pilot exhibition will be tested the following

tools:

• Tool to enhance Photos / Paintings to Short Videos

D5.1, System Architecture Page | 41

• Tool to “Text to Speech” that automatically can provide complementary

information regarding the cultural heritage assets (books, paintings,

photos)

• Tool that translates historical meaning into a more contemporary language

(e.g. better understanding old languages like Shakespeare) and for auto-

tagging/ auto-categorization of cultural heritage resources

• Comprehensive intuitive and accessible tool for all (including individuals

with disabilities) multimodal storytelling of cultural heritage assets. “

5.5.4.UC4- CH EXHIBITION AS VISITOR’S JOURNEY’S, WITH NO SENSING

BOUNDARIES

According to the DOA (SHIFT Consortium, 2022), this use case is described as:

“The SMB Museum is well aligned to the modern digital tools but still lacks

sufficient solutions for people with visual impairments, and a stream of newly

transformed content. Therefore, we aim to test innovative solutions that will

provide superior assistance for people with visual impairments while visiting the

SMB museum.

A novel exhibition on “CH exhibition as visitor’s journey, with no sensing

boundaries” will be prepared and will encompass the following:

• Tool to “Text to Speech” tool for people with visual impairments – will use

book resources, descriptions of photos/ paintings from curators.

• Tool to “Text to Speech” that automatically can provide complementary

information regarding the cultural heritage assets (books, paintings,

photos).

• Tool that translates physical objects to digital objects and uses haptics to

“feel” the objects. To implement haptic interaction with 3D digital tangible

and intangible cultural heritage assets, augmenting the user experience

(UX) with new interaction paradigms that can be used in situ or remotely.

• Comprehensive intuitive and accessible tool for all multimodal storytelling

of cultural heritage assets. “

5.5.5.SUMMARY OF TOOLS PROPOSED IN ALL USE CASES.

D1.1 (SHIFT-D1.1, 2023) defines the usage of tools in each use case. The

technologies comprising the SHIFT tools aim at expanding the inclusivity of CH

organizations, embracing in more efficient ways the individuals at risk of exclusion,

such as people with sensory disabilities like visual impairments, and enticing new

audiences such as the younger generation.

Considering the proposed tools for each use case, and summarizing them, it

results in 7 main tools to be developed as data processing tools and be placed in

each node of the Platform.

D5.1, System Architecture Page | 42

Table 4 SHIFT Tools by Use Cases

Code Description Use cases

T1-IV Image

to video

Tool to enhance Photos / Paintings to Short

Videos

UC1, UC2,

UC3

T2-VS Video

to Speech

Audio tool capable of interpreting visual stimuli

that is first converted to text and then into

speech that is finally embedded to the video

UC1, UC2,

UC4

T3-HA Haptic

Interaction

A tool that translates physical objects to digital

objects and uses haptics to “feel” the objects.

To implement haptic interaction with 3D digital

tangible and intangible cultural heritage

assets, augmenting the user experience (UX)

with new interaction paradigms that can be

used in situ or remotely

UC2, UC4

T4-AN Audio

Narrative

The tool that automatically can provide

complementary information regarding the

cultural heritage assets (books, paintings,

photos)

UC1, UC2,

UC3

T5-CT

Contemporary

Translation

A tool that translates historical meaning into

more contemporary language and for auto-

tagging/ auto-categorization of cultural

heritage resources.

UC1, UC2,

UC3

T6-AF

Accessibility

Framework

Comprehensive intuitive and accessible tool for

all (including individuals with disabilities)

multimodal storytelling of cultural heritage

assets.

UC1, UC3,

UC4

T7-AT

Accessible

Text-to-

Speech

Tool to “Text to Speech” that automatically
can provide complementary information
regarding the cultural heritage assets, by

generating and transforming image to text to
speech

UC3, UC4

The usage of the tools is summarized in D1.1 (SHIFT-D1.1, 2023) and presented

also in the next table:

D5.1, System Architecture Page | 43

Table 5 SHIFT Tools usage

Code Use cases Devices User roles

T1-IV Image

to video

UC1, UC2, UC3 Device-independent

(desktop, laptop,

kiosk, tablet, mobile)

heritage users

heritage
professionals

T2-VS Video

to Speech

UC1, UC2, UC4 Device-independent heritage users

T3-HA Haptic

Interaction

UC2, UC4 Haptic devices heritage users

T4-AN Audio

Narrative

UC1, UC2, UC3 Device-independent heritage users

T5-CT

Contemporary

Translation

UC1, UC2, UC3 Device-independent heritage

professionals

T6-AF

Accessibility

Framework

UC1, UC3, UC4 Extended Reality (XR)

devices

heritage users

T7-AT

Accessible

Text-to-

Speech

UC3, UC4 Device-independent heritage users

5.5.6.DATA INPUTS AND OUTPUTS

The tools presented in previous chapters have the following input and output

format:

Table 6 SHIFT Tools inputs/outputs

Code Use cases Input Output

T1-IV Image

to video

UC1, UC2, UC3 Images (JPG, PDF,

PNG)

 Videos (mp4, avi,

srt)

T2-VS Video

to Speech

UC1, UC2, UC4 Videos (mp4, avi, srt) Audio (wav, avi)

T3-HA Haptic

Interaction

UC2, UC4 Images (JPG, PDF,

PNG)

Haptic output

D5.1, System Architecture Page | 44

T4-AN Audio

Narrative

UC1, UC2, UC3 Images (JPG, PDF,

PNG)

Text (TXT, DOC, PDF)

Audio (wav, avi)

T5-CT

Contemporary

Translation

UC1, UC2, UC3 Text (TXT, DOC, PDF) Text (TXT, DOC,

PDF)

T6-AF

Accessibility

Framework

UC1, UC3, UC4 Images (JPG, PDF,

PNG)

Text (TXT, DOC, PDF)

Extended Reality

(XR) output

T7-AT

Accessible

Text-to-

Speech

UC3, UC4 Text (TXT, DOC, PDF) Audio (wav, avi)

5.5.7. MAPPING OF FUNCTIONAL REQUIREMENTS ON THE TOOLS

The functional requirements defined in chapter 5.3.1 are mapped on the tools T1-

T7 as specified in the next table:

Table 7 SHIFT Functional requirements - Tools mapping

Functional

requirement

Description Tools

FR1-VC Visual contrast: For good visual perception,

adjacent surfaces should differ not only in color

but also in shade. For people with partial or

total color blindness, this light/dark contrast is

extremely important.

T1-IV

FR2-VC Visual contrast: Matching or similar colors,

such as light blue and dark blue or light green

and dark green, should therefore be avoided.

T1-IV

FR3-VC Visual contrast: The color combination

red/green is completely unsuitable (approx.

9% of the population suffer from red-green

color blindness).

T1-IV

FR4-PA Picture to animation transformation T1-IV

FR5-TS Text to Speech transformation. T2-VS, T7-AT

D5.1, System Architecture Page | 45

FR6-EC Image and video processing by enhancing the

contrast of the visual content.

T2-VS, T7-AT

FR7-UF User-friendly access to various approaches

and perspectives regarding CH artifacts, with

the possibility of sorting, filtering, labeling, and

classification is the most important benefit of

a technology-assisted system for curating

efficiency.

T1-IV, T2-VS,

T4-AN, T5-CT,

T7-AT

FR8-FS Facilitating access to various digitized CH

resources (publications, studies, collections,

catalogs, exhibitions, virtual tours, audio-

video materials, etc.)

T1-IV, T2-VS,

T4-AN, T5-CT,

T7-AT

FR9-MC Multimedia content: images, videos, podcasts,

and other multimedia formats, which the IT

system can sort, metadata, and classify

according to the topics relevant to the end

users’ preferences.

T1-IV, T2-VS,

T4-AN, T5-CT,

T7-AT

FR10-VG Virtual Guides: An artificial intelligence

assistant could be programmed to provide

information about exhibits and events, as well

as answer user questions.

All tools

FR11-DR Digital representation of objects to watch on

visitor's devices (like tablets): to magnify

images, highlight details, strengthen

contrasts, to delete details; this could help

partially sighted persons or persons with

motoric problems.

T1-IV, T6-AF

FR12-AG An automatic guide system that composes

special tours in the collection of objects related

to children, gender equality, ethnic aspects,

disabilities, etc.

T1-IV, T2-VS,

T4-AN, T5-CT,

T7-AT

FR13-AC Accessibility: the possibility of access to

cultural heritage information in a variety of

formats, including text, images, and media,

through an intuitive and personalized

interface. AI-assisted computer systems could

provide accessibility through advanced search

tools and recommendation algorithms.

T1-IV, T2-VS,

T4-AN, T5-CT,

T6-AF, T7-AT

D5.1, System Architecture Page | 46

FR14-IA Interface accessibility: the system can be used

easily by all users as a priority, including

disabled people

All tools

FR15-VI Using a clear and intuitive navigation menu

adapted to the visually impaired.

T1-IV, T2-VS,

T6-AF, T7-AT

FR16-FO Using an appropriate font to facilitate reading

for people with low vision.

T1-IV, T2-VS,

T6-AF, T7-AT

FR17-SC Suitability of the CH content to the cultural

diversity of the users

T1-IV, T2-VS,

T6-AF, T7-AT

FR18-DS Information and components of the IT system

should be delivered to users in ways that they

can receive and understand correctly

regardless of any disabilities or physical

limitations they may encounter.

All tools

FR19-ST Stories that present oral or traditional histories

collected from local communities.

T2-VS, T4-

AN, T7-AT

FR20-VT Stories like virtual tours that provide

information about the cultural heritage of an

area, heritage buildings, museums, libraries,

archives, etc.

T2-VS, T4-

AN, T7-AT

FR21-AR Stories representing descriptions of tangible

(photographs, works of art, monuments, etc.)

and intangible (landscapes, attributes

/approaches/songs, etc.) CH items.

T2-VS, T4-

AN, T7-AT

FR22-EM Stories that increase the emotional impact of

CH digital content by integrating musical
compositions or suggestive images.

T2-VS, T4-

AN, T7-AT

FR23-HA Usage of haptic tools T3-HA

FR24-AS It should be possible to ask for assistance

All tools

FR25-MM Multimodality of engagement or alternative
formats

All tools

D5.1, System Architecture Page | 47

5.6. Logical (Conceptual view)
We are starting the description of the logical view by presenting our understanding

of the current situation:

IT systems are placed in different locations and deliver services to users who are

connected to them.

A user should connect to the right place, to obtain the right result.

There are no links between IT systems.

One user can be connected to one or more systems.

The actual environment is presented in the next figure (Figure 3. Actual IT

environments).

Figure 3. Actual IT environments

Starting with the actual context, and considering the ambition and the objectives

of the system, we are proposing an environment, as in the next figure (Figure 4.

Proposed Logical Architecture)

D5.1, System Architecture Page | 48

Figure 4. Proposed Logical Architecture

In the proposed architecture, we can see:

1. The actual IT systems remain in their place to serve the new components.

2. In each place of interest is placed a backend node (represented by a

yellow cube in the figure), created as part of this project, which is

responsible for:

a. Access the data from the initial system. This is possible using specific

plugins, specially developed for each site. The output is normalized

and is in a similar format for all sites.

b. Process the input data, using the algorithms described in WP2, WP3,

and WP4 and associated with T1-T7 Tools (Table 4 SHIFT Tools by

Use Cases)

c. Index the data accessible and store it as a persistence mechanism.

d. Synchronize indexed data from multiple sites.

e. Expose the indexed data.

f. Manage the list of all existing nodes.

g. Employ a mechanism to implement a P2P protocol used to discover

other nodes, update the list of nodes, and synchronize nodes

(without consensus).

h. Expose functionality via API.

i. Expose indexed data.

D5.1, System Architecture Page | 49

j. Exposed local (site data), when requested.

k. Exposed local processed data (Exposed site data after being

processed by one of the and associated with T1-T7 Tools (Table 4

SHIFT Tools by Use Cases).

3. A P2P network (represented in the figure by the sum of blue arrows),

where all the nodes are connected, and where synchronization of indexed

data is possible as also uniform access to all data, by just accessing one

node.

4. A client, located on a user device (computer, mobile), acts as a wallet

(named Art Wallet in the figure). The client will be able to present the

processed data, received via a node.

• The logical architecture of a backend node is presented in the next figure

(Figure 5. Node components)

Figure 5. Node components

In this figure, we have:

1. Data input plugin. It is responsible for accessing data on a site. Is specific

to each site. If a new site is added to the Platform, a new plugin should be

created. Is similar to the database drivers used to access different

D5.1, System Architecture Page | 50

databases. The input is the data offered by the site system. The output is

normalized data, able to be processed by any of the modules M1-M12. This

data is placed in JSON format. Binary data can be placed in BASE64 format.

Specific video and audio data will be placed in commonly used format mp4,

wav, and avi.

2. Persistence system. It is the place where indexed and hash data are stored.

It is used to quickly access the site data and also to have cross-access from

site to site. This persistence content is synchronized all the time, via the

P2P network and allows one node to give access to clients to data from the

current site and from all the other sites. The implementation will be a

Secured Data Store, exposing APIs, and persisting data in one of the File

Systems, RDBMS, NOSQL.

a. Process services. Is the place where are located all T1-T7 Tools

(Table 4 SHIFT Tools by Use Cases)

3. P2P Network component. It is used to:

a. Locate the list and address all nodes.

b. Implement a discovery mechanism.

c. Implement a synchronization mechanism.

d. Implement seed mechanism.

4. APIs (HTTP(S) Web Services), which are used to expose all the

functionalities to clients.

In detail, the node representation is shown in the next figure (Figure 6. Detailed

Node components)

The symbols used by tools are:

T1-IV Image to video

T2-VS Video&Text to Speech

T3-HA Haptic Interaction

D5.1, System Architecture Page | 51

T4-AN Audio Narrative

T5-CT Contemporary

Translation

T6-AF Accessibility Framework

T7-AT Accessible Text-to-

Speech

D5.1, System Architecture Page | 52

Process
Services

Index
Hash

HTTP Web
Service

P2P
Network

Component

UC1
UC2

UC3

UC4

Figure 6. Detailed Node components

In this presentation, we can distinguish the 6 tools used to implement the

processes in one node. The plugins are specific to use cases and are used to

capture input data. It is considered that the plugins are placed in the nodes

deployed on a specific site. That means that a node implemented in one site

usually implements just the plugin for that site. A plugin should treat all types of

data. It is a multimodal plugin, accommodating images, video, text, etc.

The data is presented to the user by using the clients. The clients are extensions

to actual viewers accessible for use cases, on their specific site.

There will be multimodal viewers, able to present the information as described in

the requirements (D1.1 (SHIFT-D1.1, 2023)).

The client (art Wallet) offers functionality to:

Connect to a backend node

Send requests to the backend node

Get data (processed) from the backend node

D5.1, System Architecture Page | 53

Expose data, in a user interface to final clients. Data exposure will consider the

requirements of this project related to accessibility,

There will be two flavors of clients:

• A text-based used just for downloading content

• A full web-based UI, accessible locally or on a cloud. It will implement

the mechanism to present data on all employed devices.

A representation of the logical view of the client is in the next figure (Figure 8.

Client component).

The haptic and 3D representations have their representation offered by specific

modules.

The UI user interface for Admin role will be like in the next figure (Figure 7. WEB

Client for admin user).

Figure 7. WEB Client for admin user

The logical diagram for the client component is presented in the next figure (Figure

8. Client component).

D5.1, System Architecture Page | 54

Figure 8. Client component

D5.1, System Architecture Page | 55

5.7. Process View
This view presents the actions and the workflow of actions possible with the SHIFT

Platform. The description is from the Platform point of view.

We are defining three groups of processes:

1. Node management. It is a group of horizontal processes, used to initiate,

place in the network and use the nodes. In the next figure (Figure 9. Process

View) they are marked in yellow color. The main processes are:

a. Seed a node. That means taking the initial node from the repository,

installing it on a server, and creating a link to the first node of the

P2P network. The seed does not send a request to a node. If it is

identified, the node answers with an acknowledgment. Next, the seed

node requests the list of all nodes. The node that sent the

acknowledgment will send also the list of all nodes.

b. Synchronize a node. This is necessary for a Seed node, but also for

all the nodes after an update in the P2P network. A node (say Node

A) having the list of all nodes will send a request for synchronization

to a node from the list (say Node B). If node B answers that it is

already synchronized, then the node who made the request (A) will

ask for a chain of nodes available. Node B will deliver the chain of

nodes registered on its side. If the requested node(B) does not

respond that it is synchronized, node A makes the same request to

another node, say Node C., and tries to synchronize. When the

synchronization is finished, Node A is marked as synchronized.

c. Use a node. This is valid for all nodes. The usage of a node means

allocating data storage and placing data on the data storage.

2. Data and knowledge management. It is a group of vertical processes, used

for placing and processing the data. In the next figure (Figure 9. Process

View) they are marked in dark blue color. The main vertical processes are:

a. Storage, index, and hashing. This process is used first to place data

in the data store, and then construct the summary for the stored

data.

b. Normalization, Process AI, process Models. This kind of process is

used to apply algorithms to data and to produce knowledge. Again,

a chain of a block is created for the knowledge derived.

c. Filter, Retrieval. This kind of process first applies to the chain of blocs.

If the information is found there, the next search is performed in full

blocks, where full data or knowledge exists.

3. Helper processes. We are including here processes not directly involved in

the data and knowledge delivery but assisting these processes. We are

mentioning here: all specific services associated with Tools T1-T7.

a. User Access and Authorization

b. Auditing

c. Statistics

d. Link with external systems

D5.1, System Architecture Page | 56

e. Cashing mechanism

f. Version management

5.7.1.NODE MANAGEMENT

The processes presented for the management of nodes (horizontal processes) are

represented in the sequence diagram below (Figure 9. Process View)

Figure 9. Process View

The sequence diagram for the initial creation of a node is presented in the next

figure (Figure 10. Node sequence diagram).

D5.1, System Architecture Page | 57

Figure 10. Node sequence diagram

The sequence diagram for disseminating the information between nodes

(synchronization) is presented in the figure below (Figure 11. Node

synchronization process sequence diagram)

D5.1, System Architecture Page | 58

Figure 11. Node synchronization process sequence diagram

5.7.2.DATA AND KNOWLEDGE MANAGEMENT

When processing data and knowledge, the main element used is called

“Workspace”.

In a workspace, there are placed all the elements necessary for an exhibition.

D5.1, System Architecture Page | 59

The creation of a workspace is done by a curator. For this reason, the next

subchapters will include the processes and the sequence diagrams as they are

planned for the curator role.

For the end user (visitor) role, things are much simpler. They just access an

exhibition, and request information available. No interaction with any tools, as this

interaction is done by the curator, and all the information, in any format, is

prepared. The visitors will just use the client (art wallet) to access data.

For some outputs, the services are called, but this is transparent for the final user.

This is why, we are not including here processes or sequence diagrams from the

final user point of view.

Then in the workspace are placed all the artifacts available, then specific services

are called on artifacts, which will result in the creation of other artifacts, placed

again in the workspace.

Finally, a workspace created for an exhibition will group all the inputs and all the

created elements as a result of working with the tools.

We are presenting now, the sequence diagram for the usage of each tool.

In each sequence diagram, there are two common elements:

The actor a1: Curator. Is the person who initiates a workspace, and is working

with the tool.

The Workspace. It is the place where all the data and knowledge is stored. Also is

the software element used by the curator when interacting with the system.

Important to notice that the workspace can contain full data (for example images),

or just link to the input images. In the case of a link, the platform can present the

final user with the correct output, by using the link.

Also, some processed information is in the form of output data (image, video,

text), or is a link to an API that will deliver the correct data for the final user.

The sequence diagrams refer to the module developed in this project. The module

will be described in the next chapter view 5.8.

The sequence diagrams consider that there is no workspace created yet when a

tool is used.

As a workspace can store the work of several tools, and each tool can be used

many times on the same workspace, in the sequence diagrams presented in this

chapter, the first part (Request and create a workspace) is no longer needed, and

instead, open an existing workspace is necessary. All the other actions are the

same.

We are just enumerating them now, and refer to the full description in the next

chapter.

D5.1, System Architecture Page | 60

Table 8 SHIFT List of Modules

Code Module

M1-FOS Foreground/background object segmentation

M2-MOS Physics-informed machine learning algorithms and video

generation

M3-ASR Action sequence recognition within the CH video repository

M4-NLP Comprehensive textual representation of assets based on NLP

approaches

M5-TEL Modeling Temporal Evolution of Language for Cultural Asset

Curation

M6-TVS Video/Text to Speech production tool

M7-HAP Haptic Techniques for 3D Digital Asset Perception

M8-3DP An accessible framework of inclusive museum exhibits for 3D

digital asset perception

M9-FEX Cultural Asset Pre-processing and Feature Extraction for Media

Curation

M10-ASO Multimedia Cultural Asset Curation Based on Association by Design

M11-DRM Digital Rights Management

M12-PBK Main Platform, backend

M13-PFB Main platform client (Wallet)

M14-COM Communication and Integration Platform

5.7.2.1. T1-IV IMAGE TO VIDEO

Tool to enhance Photos / Paintings to Short Videos.

For this tool, the curator places several images on the workspace and then calls

the modules of the tool to process input images and give the required output.

First images are preprocessed and used to create videos. Next action sequences

are detected. Using the results obtained from several processings, associations

between elements are searched and presented to the system.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

D5.1, System Architecture Page | 61

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 12. T1-IV sequence diagram).

a1:Curator

Workspace(
exibition)

M1-
FOS(segmen

tation)

Create Workspace

WS created

M2-MOS(video
generation)

M3-ASR(action
sequence)

Prepare WS structure

Add image

Place in WS node

Request Preprocessing

Prepocessing done

Place in WS node

Request video generation

Preprocesing done

Request video genertion

Video generted
Video generted

Add video to WS

Video added in WS

Request action recognition

Action recognition

List of ctionList of actions

M11-DRM

Request DR info Request DR

Check DR

DR

Add to WS

M10-
ASO(Asssociation)

loop create video content

[parameters]loop image collection

[condition]

Request associations Request associationss

Detect associations

AsssociationsAssociations

Figure 12. T1-IV sequence diagram

5.7.2.2. T2-VS VIDEO TO SPEECH

Audio tool capable of interpreting visual stimuli (e.g., actions explained in visual

sequences)

The input of this tool can come from an existing video, or from a video obtained

by using the tool T1-IV.

The video frames, the sequence of actions, are then processed by text and video

to speech, and audio output is created.

The audio output can be further processed for feature extraction.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 13. T2-VS sequence diagram).

D5.1, System Architecture Page | 62

Workspace(
exibition)

loop video to speech collection

[condition]

Create Workspace

WS created

M3-ASR(action
sequence)

Prepare WS structure

Add video

Place in WS node

preprocesing done

Request Text and video to speech

speech added in WS

Request feature extraction Request asset preprocesing and feature extraction

list of ffeatures

list of features

M11-DRM

Request DR info

Check DR

DR infoDR info

Place in WS node

M6-TVS(Text
and video to

speech)

M9-FEX(Asset
preprocessing)

Request action sequnece detection

action sequence

Place in WS node

sequncce placed in WS

Place text

Place in WS node

text placed

Detect action sequence

Request text and video to speech

Text and video to Speech

speech

Place in WS node

Feature extraction

Figure 13. T2-VS sequence diagram

5.7.2.3. T3-HA HAPTIC INTERACTION

A tool that translates physical objects to digital objects and uses haptics to “feel”

the objects. To implement haptic interaction with 3D digital tangible and intangible

cultural heritage assets, augmenting the user experience (UX) with new

interaction paradigms that can be used in situ or remotely.

The input of this tool can come from existing physical objects, or digital twins of

physical objects. For physical objects first digital twins (3D representations are

created).

Next 3D digital twins are passed to the Haptic tool which allows the user

interaction with them.

In this case, the workspace is used to store the digital twins and the haptic

representation of them.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 14. T3-HA sequence diagram).

D5.1, System Architecture Page | 63

a1:Curator

Workspace(
exibition)

loop video to speech collection

[condition]

Create Workspace

WS created

M1-FOS(object
detection)

Prepare WS structure

Add video

Place in WS node

preprocesing done

Request haptic interactions

M11-DRM

Request DR info

Check DR

M7-HAP(Haptic
techniques)

Request object detection

objects

Place in WS node

objects

Place3D digital twins

Place in WS node

3D digital twins registered

Detect objects

Request haptic interations

Haptic context created

haptic context

Place in WS node

Haptic
device

Interaction

feedback

Figure 14. T3-HA sequence diagram

5.7.2.4. T4-AN AUDIO NARRATIVE

The tool automatically can provide complementary information regarding the

cultural heritage assets (books, paintings, photos)

The input of this tool can come from an existing video, or from a video obtained

by using the tool T1-IV. Also, text (in contemporary or old format) can be used as

input.

The video inputs are used to create NLP textual representations

For their textual representations obtained from M4-NLP or directly registered by

users, linguistic models are created to make it possible to reformulate the content.

The (reformulated) text content is then processed by text to text-to-speech

module, and the audio narrative is obtained.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 15. T4-AN sequence diagram).

D5.1, System Architecture Page | 64

a1:Curator

Workspace(
exibition)

M4-NLP(textual
representation)

loop audio narative

[condition]

Create Workspace

WS created

M5-TEL(linguistic
models)

M6-TVS(Text and
video to speech)

Prepare WS structure

Add image or video

Place in WS node

Request textual representation

textual representation

Place in WS node

Request linguistic models

textual representation

Request contemporary descr.

Linguisticc models

contemporary text

Place text in WS node

Text added in WS

Request text to speeh Requet text to speech

Text to speech

speech

speech

M11-DRM

Request DR info

Check DR

DR infoDR info

NLP for textual representation

Add to WS

Figure 15. T4-AN sequence diagram

5.7.2.5. T5-CT CONTEMPORARY TRANSLATION

A tool that translates historical meaning into more contemporary language and for

auto-tagging/ auto-categorization of cultural heritage resources.

The input of this tool can come from an existing video, or from a video obtained

by using the tool T1-IV. Also, text (in contemporary or old format) can be used as

input.

The video inputs are used to create NLP textual representations

For their textual representations obtained from M4-NLP or directly registered by

users, linguistic models are created to make it possible to reformulate the content.

The (reformulated) text content is then sent to users.

Feature extraction or association detections can be also requested via this tool.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

D5.1, System Architecture Page | 65

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 16. T5-CT sequence diagram).

a1:Curator

Workspace(
exibition)

loop Translate in contemporary language

[condition]

Create Workspace

WS created

M5-TEL(model
language)

Prepare WS structure

Add text(historical description)

Place in WS node

text aadded

Request features

M11-DRM

Request DR info

Check DR

DR infoDR info

M9-FEX(Feature
extraction)

Request ccontemporary reformulation

Place in WS node

contemporary text

Textual representations

Request feature extractions

Fetures extraction

features
Place in WS node

M10-
ASO(Aassociations)

features

Request associations Request asssociations
Create associations

associations

Place in WS node

associations

M4-NLP(textual
representations)

Reformulate textcontemporary text

Figure 16. T5-CT sequence diagram

5.7.2.6. T6-AF ACCESSIBILITY FRAMEWORK

Comprehensive intuitive and accessible tool for all (including individuals with

disabilities) multimodal storytelling of cultural heritage assets.

The input of this tool can come from an existing video, or from a video obtained

by using the tool T1-IV. Also, text (in contemporary or old format) can be used as

input.

The video inputs are used to create NLP textual representations

For their textual representations obtained from M4-NLP or directly registered by

users, linguistic models are created to make it possible to reformulate the content.

The (reformulated) text content is then sent to users.

The text can be next converted into speech.

Multimodal representations are another possibility offered by the system.

Feature extraction or association detections can be also requested via this tool.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

D5.1, System Architecture Page | 66

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 17. T6-AF sequence diagram).

a1:Curator

Workspace
(exibition)

M3-
ASR(action
sequences)

loopcreate multimodal content

[condition]

Create Workspace

WS created

M4-
NLP(Text
models)

M8-
3DP(Multim

odal)

Prepare WS structure

Add image

Place in WS node

Detect actions

actions

Place in WS node

Request text descriptions

Preprocesing done

Request textual decriptions Model created

Video generted

Place in WS node

Video added in WS

Request text to speeh Request text to speech

Action recognition

speechList of actions

M11-DRM

Request DR info Request DR info

Check DR

DR info

Plaace in WS Node

M5-
TEL(model
language)

M6-TVS(Text
and video to

speech)

M9-FEX-
Preproces

sing

M1--
ASO(associa

tions)

Add Text

Textual descr.

Request 3D and multimodal representation
Multimodal representation

Request Multimodal

multimodal

Place in WS node

Request associations Request associations

Associationss

asssociations

Place in WS node

associations

Figure 17. T6-AF sequence diagram

5.7.2.7. T7-AT ACCESSIBLE TEXT-TO-SPEECH

Comprehensive intuitive and accessible tool for all (including individuals with

disabilities) multimodal storytelling of cultural heritage assets.

The input of this tool can come from an existing video, or from a video obtained

by using the tool T1-IV. Also, text (in contemporary or old format) can be used as

input.

The video inputs are used to create NLP textual representations

D5.1, System Architecture Page | 67

For their textual representations obtained from M4-NLP or directly registered by

users, linguistic models are created to make it possible to reformulate the content.

The (reformulated) text content is then processed by a text-to-speech module,

and multimodal storytelling is obtained.

Finally, the Data Rights Management tool is used to inform the user about the

rights to use the content of the workspace.

The sequence diagram representing the processing flow inside this tool is

presented in the next figure. (Figure 18. T7-AT sequence diagram).

a1:Curator

Workspace(
exibition)

M4-NLP(textual
representation)

loop audio narative

[condition]

Create Workspace

WS created

M5-TEL(linguistic
models)

M6-TVS(Text and
video to speech)

Prepare WS structure

Add image or video

Place in WS node

Request textual representation

textual representation

Place in WS node

Request linguistic models

textual representation

Request contemporary descr.

Linguisticc models

contemporary text

Place text in WS node

Text added in WS

Request text to speeh Requet text to speech

Text to speech

speech

speech

M11-DRM

Request DR info

Check DR

DR infoDR info

NLP for textual representation

Add to WS

Figure 18. T7-AT sequence diagram

5.7.2.8. PROCESSES SPECIFIC FOR EACH USE CASE
We have presented the processes and the sequence diagrams for each tool

proposed, based on the business needs and considering modules designed for

each tool.

Now we are summarizing the usage of processes based on the four use cases. The

point of view is that of a curator. As already mentioned, the final users (visitors)

just access the exhibition (workspace) and search for the desired output.

D5.1, System Architecture Page | 68

In each use case, the first action of a user is to create a workspace. Next,

depending on the use case, different tools are used, and the workspace is updated.

When presenting the processes for each use case, we consider that the workspace

is already created.

The usage of tools does not impose a specific sequence. Also, a tool can be called

several times.

All the information referred to here is stored in a node of the distributed Data and

Knowledge Mesh. The distribution and synchronization of the nodes are subject to

the processes presented in the previous chapter (5.7.1)

UC1- 19TH TO MODERN DAYS SERBIAN PAINTINGS AND MODERN ART

The process (tools) involved are:

• T1-IV Image to video

• T2-VS Video to Speech

• T4-AN Audio Narrative

• T5-CT Contemporary Translation

• T6-AF Accessibility Framework

UC2- EXPERIMENTING WITH THE TRANSFORMATION OF MEDICINE AND

PHARMACY

• T1-IV Image to video

• T2-VS Video to Speech

• T3-HA Haptic Interaction

• T4-AN Audio Narrative

• T5-CT Contemporary Translation

UC3- ROMANIAN HISTORY AND CUSTOMS EXPLAINED TO DIGITAL NATIVES

• T1-IV Image to video

• T4-AN Audio Narrative

• T5-CT Contemporary Translation

• T6-AF Accessibility Framework

• T7-AT Accessible Text-to-Speech

UC4- CH EXHIBITION AS VISITOR’S JOURNEY, WITH NO SENSING BOUNDARIES

• T2-VS Video to Speech

• T3-HA Haptic Interaction

• T6-AF Accessibility Framework

• T7-AT Accessible Text-to-Speech

D5.1, System Architecture Page | 69

5.8. Physical View
The physical view presents the software elements used to create the tools

described in the Use Case View and details the implementation means of all the

software components. Each tool is created based on several software modules,

with functionality covering the tool's needs.

The description starts with the presentation of individual modules and goes further

to describe how the modules are placed in tools and finally in the distributed

environment based on nodes.

5.8.1.LIST OF ALL MODULES

We are presenting here the list of all modules of the system. The provider of the

tool is indicated also. See Subchapters 5.7.3-5.7.16 for details. The table below

indicates all functionalities planned to be developed for each module in the

Platform.

Table 9 SHIFT List of Modules by Owner.

Code Module Owner

M1-FOS Foreground/background object segmentation MDS

M2-MOS Physics informed machine learning algorithms and

video generation
QMUL

M3-ASR Action sequence recognition within the CH video

repository MDS

M4-NLP Comprehensive textual representation of assets

based on NLP approaches UAU

M5-TEL Modeling Temporal Evolution of Language for

Cultural Asset Curation UAU

M6-TVS Text and video-to-speech production tool AUD

M7-HAP Haptic Techniques for 3D Digital Asset Perception FORTH

M8-3DP An accessible framework of inclusive museum

exhibits for 3D digital asset perception FORTH

M9-FEX Cultural Asset Pre-processing and Feature

Extraction for Media Curation UAU

M10-ASO Multimedia Cultural Asset Curation Based on

Association by Design UAU

M11-DRM Digital Rights Management QMUL

M12-PBK Main Platform, backend SIM

D5.1, System Architecture Page | 70

M13-PFB Main platform client (Wallet) SIM

M14-COM Communication and Integration Platform SIM

5.8.2.TEMPLATE USED TO DESCRIBE THE MODULES

The modules will be described using the template given in this subchapter.

There are specific paragraphs to be included.

Name: <Module Name>

Provider: <Company abbreviation>

Work Package<WP and Tasks where the module was developed>

Part of tools <Tools where the module is used>

Short description of the final module:

<text description>

Full description is/will be part of <deliverable>

Technologies used

<OS, Platform, Libraries, etc., text description>

Is containerized

<Container type, How to use it>

Installation and configuration

<text description>

Produced data (Outputs)

<List of data produced, (format, dimension, availability):>

Consumed data. (Inputs)

<List of topics. (format, dimension, availability):>

Asynchronous data exchange

<Explain if necessary>

APIs

<describe APIs I any)

Third-party libraries used

D5.1, System Architecture Page | 71

<enumerate the libraries>

User interface

<If available, describe if it is web, text-based, Windows-based, Java-based, etc.).

How to test the system

<text description>

5.8.3.M1-FOS FOREGROUND/BACKGROUND OBJECT SEGMENTATION

Provider: MDS

Work Package: WP2/T2.1: Deep-learning architecture design and

implementation for foreground/background object detection.

Part of tools: T1-IV Image to video, T3-HA Haptic Interaction.

Short description of the final module:

Our pipeline shall execute preprocessing operations. It shall accept an image as

input and generate multiple images containing potentially altered details that have

evolved. Each resultant image shall be paired with its respective description.

Furthermore, an option will be available for constructing three-dimensional models

of the objects depicted in the images.

In order to achieve the results, the following steps are considered:

• Super Resolution (SR): As we mentioned before, we utilize a deep

learning-based model that significantly improves the resolution of low-

quality images. This model employs advanced techniques such as CNNs and

GANs.

• Segmentation: For segmentation, our objective is to leverage Segment

Anything Model (SAM) tailored for cultural heritage data, especially for our

coin dataset. The retraining session involves fine-tuning the model with a

carefully curated dataset. In our approach, we use the World Coins Dataset

as a base, from which we select 300 images for mask generation.

• For 3D modelling, following the successful generation of high-quality

segmentation masks, we implement the One-2-3-45 architecture. This

innovative architecture is designed to create multi-view 3D meshes of the

objects. It works by processing the segmented 2D images and

reconstructing them into 3D models.

Full description is part of D2.1 Chapter 2.2 (SHIFT-D2.1, 2023)

Technologies used:

OS: Windows

Platform: Python 3

D5.1, System Architecture Page | 72

Libraries: Anaconda (all additional packages will be provided through a .yml file)

Is containerized

no

Installation and configuration:

Anaconda Environment

Produced data (Outputs):

 1. Images (.png/.jpg)

 2. Text (.txt)

Consumed data. (Inputs):

 Images (.png/.jpg)

Asynchronous data exchange:

The task operates asynchronously, wherein we will receive images and

subsequently provide the generated files.

APIs

N/A

Third-party libraries used

 https://github.com/facebookresearch/segment-anything

User interface

 CLI (python script)

How to test the system

- Currently, the end user can assess the quality of the pipeline's output. We

are in communication with our partners and have received feedback on the

system's performance.

- The primary evaluation criterion is the visual result, given the absence of a

ground truth for comparison.

- In the next phase, we will explore an independent evaluation system,

allowing users to autonomously utilize the pipeline.

5.8.4.M2-MOS PHYSICAL INFORMED MACHINE LEARNING ALGORITHMS

AND VIDEO GENERATION

Provider: QMUL

Work Package: WP2/T2.2: Physics informed deep-learning network architecture.

Part of tools: T1-IV Image to video.

D5.1, System Architecture Page | 73

Short description of the final module:

The module provides the following 2 functionalities:

1. For a given input image, the outcome from the task will result in the

generation of a video sequence.

2. The video sequence generation will insert the artistic elements to make the

videos more accessible and improve the appeal of the content.

Following the extensive review, during the first year of SHIFT project

implementation, the input gathered from WP1 on use-cases consisting of an

overview of cultural heritage assets have been analysed. Subsequently, the

architecture of U-Net deep-learning model has been chosen as a basis for the

development of stable diffusion architecture for the implementation of SHIFT

computer vision toolkit to generate motion sequences.

Full description is part of D2.1(SEN3) Chapter 3 (SHIFT-D2.1, 2023)

Technologies used

OS: Linux PC, (GPU is required)

Platform: Python3

Languages: Python

Libraries: FFMPEG, OpenCV, PyTorch, Conda (for Windows)

Is containerized:

N/A. Native support is offered to access GPU.

Installation and configuration

Module installation requires the execution of Python dependencies and associated

libraries as virtual environment. For the windows, Conda library support will be

extended.

Produced data (Outputs)

1. Video (.mp4/.avi)

Consumed data (Inputs)

1. Images (.png/.jpg)

Asynchronous data exchange

• N/A

3 SEN-Sensitive deliverable

D5.1, System Architecture Page | 74

APIs

• N/A

Third-party libraries used

• OpenCV libraries

• U-NET libraries

• Diffusion model libraries

User interface

• CLI (python script)

• Automated execution using Restful APis

How to test the system

• The generation of the video sequences will be used to verify the module

execution.

• The evaluation of the generated video sequences will be assessed based on

the subjective and qualitative metrics that are gathered from the end-users.

• As reported in D2.1, the adoption of stable diffusion models will be

subjected to community-based evaluation, that leads to the overall

acceptance of the video sequences by the end-users.

• Formal evaluation methods and acceptance of end-users will be reported in

D2.2 (due by M30).

5.8.5.M3-ASR ACTION SEQUENCE RECOGNITION WITHIN CH VIDEO

REPOSITORY

Name: Action sequence recognition within the CH video repository

Provider: MDS

Work Package: WP2/T2.4: Action sequence recognition within the CH video

repository.

Part of tools: T1-IV Image to video, T2-VS Video to Speech

Short description of the final module:

The model will receive a video input and subsequently generate a class label,

representing an action selected from the provided vocabulary.

To explore the possibility of expanding the repertoire of actions, we employed a

transfer learning methodology. We selected various architectures from the

GluonCV library, which offers implementations of cutting-edge deep learning

models in the domain of computer vision.

Our approach involved the removal of the final layers in these networks, followed

by the implementation of new layers designed to produce the specific output set

of interest. Subsequently, we conducted training using our newly created dataset.

To be more precise, our focus was on transferring the models from the Kinetics

400 dataset to UCF101.

D5.1, System Architecture Page | 75

Full description is part of D2.1(SEN) Chapter 4 (SHIFT-D2.1, 2023)

Technologies used:

OS: Windows

Platform: Python 3

Libraries: PyTorch, GlyonCV, Anaconda (all additional packages will be provided

through a .yml file),

Is containerized: no

Installation and configuration:

Anaconda Environment

Produced data (Outputs):

Text (Label or Action .txt)

Consumed data. (Inputs)

Video (.mp4)

Asynchronous data exchange:

Yes, for uploading videos

APIs

N/A

Third-party libraries used

https://github.com/dmlc/gluon-cv

User interface

CLI (python script)

How to test the system

- Currently, the end user can assess the quality of the pipeline's output. We

are in communication with our partners and have received feedback on the

system's performance.

- There is no definitive reference to assess the rate of identifying actions, so

the evaluation necessitates human intervention. We are contemplating the

creation of a test set to verify the system's reliability.

- In the next phase, we will explore an independent evaluation system,

allowing users to autonomously utilize the pipeline.

D5.1, System Architecture Page | 76

5.8.6.M4-NLP COMPREHENSIVE TEXTUAL REPRESENTATION OF ASSETS

BASED ON NLP APPROACHES

Provider: UAU

Work Package: WP3/T3.1: Comprehensive textual representation of assets

based on NLP approaches.

Part of tools: T4-AN Audio Narrative, T5-CT Contemporary Translation, T6-AF

Accessibility Framework, T7-AT Accessible.

Short description of the final module:

This component will leverage the knowledge and semantic features towards

creating comprehensive textual representations of the CH assets. The devised

mechanism will employ state-of-the-art NLP approaches to learn temporal

embeddings and apply regularization terms to smooth embedding changes across

time.

Full description is part of D3.1(SEN) (SHIFT-D3.1, 2023)

Technologies used

OS: Ubuntu, NixOS

Platform: Python 3, Poetry

Libraries: <not known yet>

Is containerized: no

Installation and configuration

e.g., pip requirements.txt

Produced data (Outputs)

Text

Consumed data. (Inputs)

Image, Text, Table

Asynchronous data exchange

• N/A

APIs

• N/A

Third-party libraries used

e.g., Hugging Face

D5.1, System Architecture Page | 77

User interface

Terminal

How to test the system

User Preference Testing: Users interact with textual representations generated by

the module to rate their comprehensiveness and relevance to CH assets. Feedback

reflects the positive effectiveness.

LLM Quality Check: An additional language model evaluates the generated textual

representations for accuracy and semantic richness. This reflects assessing how

well the temporal embeddings contributes to capturing the evolution and context

of CH asset.

5.8.7.M5-TEL MODELLING TEMPORAL EVOLUTION OF LANGUAGE FOR

CULTURAL ASSET CURATION

Provider: UAU

Work Package: WP3/T3.2: Modelling Temporal Evolution of Language for

Cultural Asset Curation.

Part of tools: T4-AN Audio Narrative, T5-CT Contemporary Translation, T6-AF

Accessibility Framework, T7-AT Accessible.

Short description of the final module:

This module will create linguistic models using deep learning algorithms to model

associations of temporal evolution that enable time-independent curation and map

contemporary asset descriptions with archive representation. The deep learning

algorithms will be used to extract and train on inherent linguistic patterns used for

the description of cultural assets.

Moreover, the tool aspires to establish linguistic models through the integration of

state-of-the-art learning algorithms, designed to understand and represent

temporal evolution associations. Harnessing meticulous representations acquired

in T3.1, these models facilitate seamless and enhanced execution of time-

independent curation tasks, utilizing subtly engineered prompts within an

integrated ecosystem to narrow down the temporal focus. A property intrinsically

ingrained in novel methods such as LangChain. With the objective of aligning

contemporary asset description with archival representations, the tool ensures a

comprehensive understanding of artifacts’ multifaced contexts, originating from

either image-processed captions or linguistic nuances. This synergistic method not

only offers refined summarizations and translations, but also further fine-tuning

guarantees contextually synchronized and coherent interpretations of CH artifacts.

Full description is part of D3.1(SEN) (SHIFT-D3.1, 2023)

Technologies used

D5.1, System Architecture Page | 78

OS: Ubuntu, NixOS

Platform: Python 3, Poetry

Libraries: <not known yet>

Is containerized: no

Installation and configuration

e.g., pip requirements.txt

Produced data (Outputs)

Text

Consumed data. (Inputs)

Image, Text, Table

Asynchronous data exchange

• N/A

APIs

• N/A

Third-party libraries used

e.g., Hugging Face

User interface

Terminal

How to test the system

A/B Testing and User Satisfaction: Users presented with linguistic models’ outputs,

like summarization and style transfer of CH assets of different language models.

User preferences and feedback reflect the effectiveness.

LLM Comparative Assessment: An additional language model evaluates outputs

for their ability to accurately represent the effect of transforming the text in

different styles.

5.8.8.M6-TVS TEXT AND VIDEO-TO-SPEECH PRODUCTION TOOL

Provider: AUD

Work Package: WP3/T3.3: Text and video-to-speech production tool for the

affective narration of cultural heritage assets.

Part of tools: T2-VS Video to Speech, T4-AN Audio Narrative, T5-CT

Contemporary Translation, T6-AF Accessibility Framework, T7-AT Accessible.

D5.1, System Architecture Page | 79

Short description of the final module:

The module provides the following 2 functionalities:

1. Given (plain) text, the module generates a (.wav) audio with Synthesized

Speech.

2. Given Video (ffmpeg available formats) & and time-stamped Subtitles as

extra file (.srt), the module replaces the audio in the input video with

affective synthesized Speech. The synthesized Speech will pronounce the

text from the .srt file.

Using a low-resource open-source TTS System along with the Speech Emotion

Recognition module developed by AUD the tool is able to clone the emotion of an

native/natural voice into synthesized speech thus transforming a text into

affective synthesized speech.

Through the affective synthesis of speech, the aim is to transform CH items into

vibrant and engaging narratives that stimulate the imagination and create strong

emotional connections.

Full description is part of D3.2 (SHIFT-D3.2, 2023)

Technologies used

OS: Linux PC, (GPU is optional)

Platform: Python3

Languages: Python

Libraries: onnxruntime, ffmpeg, PyTorch, sox, transformers

Is containerized: No

Installation and configuration

No installation needed / repo of Python scripts. Requires virtualenv and installation

of dependencies via pip (will be described on GitHub page of the Module).

Produced data (Outputs)

1. Audio (.wav)

2. Video (.mp4)

Consumed data. (Inputs)

1. Text (.txt) - For now only English

2. time-stamped English subtitles (.srt) & and video (.avi / .mp4)

Asynchronous data exchange

 N/A

APIs

D5.1, System Architecture Page | 80

 Ongoing Implementation: https://github.com/audeering/shift

Third-party libraries used

 Open-Source TTS Library: https://github.com/MycroftAI/mimic3

User interface

 CLI (python script)

How to test the system

 Install/Run Python demo from https://github.com/audeering/shift

on (.txt) file to produce speech (.wav) and/or video (.mp4):

• Apt to pronounce English (.txt) and for the future also foreign-language(s)

(.txt) with various perceivable emotional intonations/voices.

• Attain a high user satisfaction score for appealing TTS voice(s) along with

clear speech pronunciation: Mean Opinion Score (MOS) >=3.

5.8.9.M7-HAP HAPTIC TECHNIQUES FOR 3D DIGITAL ASSET PERCEPTION

Provider: FORTH

Work Package: WP3, T3.4: Haptic techniques for 3D digital asset perception.

Part of tools: T3-HA Haptic Interaction.

Short description of the final module:

This library focuses on providing haptic-based interaction in Virtual Reality (VR)

environments and supporting physical interaction via haptic gloves. Through the

provided functionalities of the library, users can feel the emulated physical

attributes of Cultural Heritage (CH) assets in the VR environment, providing them

with haptic feedback. To that force and temperature input can be experienced by

users when “touching” virtual 3D digital twins of the CH assets existing in a VR

application. Furthermore, the users can also manipulate these CH digital twins

with proper gestures (e.g., grab, move, rotate, etc.).

A dedicated VR scene was developed to focus specifically on testing the haptic

feedback provided by the selected device (WEART TouchDIVER) on sample CH

assets. Multiple 3D CH assets were integrated into the scene with different sizes,

textures, and materials, as shown in Figure 8. From left to right, the assets are

crafted from gold, soft limestone, stone, glass, and wood, showcasing a diverse

range of materials regarding physical attributes. The WEART SDK was integrated

into the scene to add haptic effects to the 3D objects. A range of haptic attributes

is offered through the “WeArtTouchableObject” component, including:

• Temperature: The temperature value implemented on the target thimble or

thimbles, ranging from 0.0 to 1.0. A value of 0.5 represents the environmental

https://github.com/audeering/shift
https://github.com/MycroftAI/mimic3
https://github.com/audeering/shift

D5.1, System Architecture Page | 81

temperature, while lower values indicate colder sensations and higher values

convey hotter sensations.

• Force: The force value applied on the target thimble(s), ranging from 0 to 1. A

value of 0.0 indicates no force, while a value of 1.0 represents maximum force.

• Texture: The type of texture rendered on the thimble or target thimbles,

represented by an index ranging from 0 to N. A selection of textures that can be

applied to the haptic feedback is provided, such as crushed rock, plastic, and more,

as shown in Figure 9.

• Volume Texture: This attribute allows developers to configure the intensity of

the texture rendering, adjusting the strength of the tactile feedback provided by

the texture.

• Graspable: Enabling this option grants users the ability to grasp and lift the

virtual object with virtual hands.

Full description is part of D3.3 (SHIFT-D3.3, 2023)

Technologies used:

OS: Windows

Platform: Unity 3D

Languages: C#

Libraries: Libraries in Weart SDK package for Unity: https://weart.it/developer-

guide/ (WeArt.Core, WeArt.TouchEffect, etc.).

Middleware: Weart Middleware https://www.weart.it/docs/middleware/

Is containerized:

No, the module is provided as a Unity3D asset.

Installation and configuration

• Download and install the Weart middleware

• Download the unity.package

• Import the unity. package to an empty Unity3D project

• Add to the scene the WeArtController, the WEARTLeftHand, the

WEARTRightHand, and the TouchableCube prefabs

• Configure the TouchableCube through the WeArtTouchableObject script

with the haptic effects of your choice

• Connect the haptic gloves doggle to your computer

• Open the Weart middleware application and connect to the haptic gloves

• Connect the Oculus headset to your computer

• Wear the haptic gloves and the Oculus headset

• Run the Unity3D application as a Windows application

Produced data (Outputs)

https://weart.it/developer-guide/
https://weart.it/developer-guide/
https://www.weart.it/docs/middleware/

D5.1, System Architecture Page | 82

Haptic effects (thermal and force queues)

Consumed data. (Inputs)

Hand tracking data from the haptic glove.

Asynchronous data exchange

N/A

APIs

N/A

Third-party libraries used

Weart SDK for Unity

User interface

It is embedded in a Unity application

How to test the system

• Install the Middleware to the PC

• Wear the TouchDIVER device

• Wear the Meta Quest Pro headset

Run the provided Unity application and check for:

• Enable the conveyance of essential information (e.g., size and material)

about digital assets through haptic feedback, aiming for a minimum

perceivability rate of 70%

• Attain a user satisfaction rate of at least 75% regarding the effectiveness

of haptic feedback in perceiving the virtual artifacts

• Achieve a positive overall haptic experience of at least 70%

5.8.10. M8-3DP ACCESSIBLE FRAMEWORK OF INCLUSIVE MUSEUM

EXHIBITS FOR 3D DIGITAL ASSET PERCEPTION

Provider: FORTH

Work Package: WP3, T3.5: Accessible framework of inclusive museum exhibits

for 3D digital asset perception.

Part of tools: T6-AF Accessibility Framework.

Short description of the final module:

An accessible framework for Unity 3D application, providing accessibility features

to VR museum 3D digital CH exhibits. It aims to support a personalized accessible

environment for people with visual impairments, through multimodal interaction

D5.1, System Architecture Page | 83

and multifaceted information, considering their accessibility needs and individual

characteristics. To achieve this the framework provides numerous accessibility

features (e.g., magnifying glass, color change, etc.) and combines customized

audio descriptions of the CH assets, tailored to the user’s needs and preferences,

3D sounds, and haptic feedback by incorporating the output of the rest modules

of WP3.

Full description will part of D3.4 (SHIFT-D3.4, 2024)

Technologies used:

OS: Windows

Platform: Unity 3D

Languages: C#

Libraries: Libraries in Weart SDK package for Unity: https://weart.it/developer-

guide/ (WeArt.Core, WeArt.TouchEffect, etc.).

Middleware: Weart Middleware https://www.weart.it/docs/middleware/, oculus

application

https://www.meta.com/quest/setup/?utm_source=www.meta.com&utm_mediu

m=dollyredirect

Is containerized:

No, it is a Unity3D application.

Installation and configuration

• Download and install the Weart middleware

• Download and install the Oculus Application

• Connect the haptic gloves doggle to your computer

• Open the Weart middleware application and connect to the haptic gloves

• Connect the Oculus headset to your computer

• Wear the haptic gloves and the Oculus headset

• Run the provided application (.exe)

Produced data (Outputs)

• Haptic effects (thermal and force queues)

• Text descriptions

• Audio descriptions

Consumed data. (Inputs)

Tracking data from the device

Asynchronous data exchange

N/A

APIs

https://weart.it/developer-guide/
https://weart.it/developer-guide/
https://www.weart.it/docs/middleware/
https://www.meta.com/quest/setup/?utm_source=www.meta.com&utm_medium=dollyredirect
https://www.meta.com/quest/setup/?utm_source=www.meta.com&utm_medium=dollyredirect

D5.1, System Architecture Page | 84

N/A

Third-party libraries used

• Libraries in Weart SDK package for Unity

• XR Interaction Toolkit

https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.4/

manual/index.html

• UAP https://assetstore.unity.com/packages/tools/gui/ui-accessibility-

plugin-uap-87935

User interface

Virtual Reality application

How to test the system

Run the provided Unity application and interact with the virtual environment and

check for:

• Success rate of at least 85% for navigating the virtual environment and

interacting with virtual artifacts for users with visual impairments

• Attain a high user satisfaction score (SUS), M>=75%

• Achieve a positive overall user experience (UEQ), M>=80%

5.8.11. M9-FEX CULTURAL ASSET PRE-PROCESSING AND FEATURE

EXTRACTION FOR MEDIA CURATION

Provider: UAU

Work Package: WP4/T4.1: Cultural Asset Pre-processing and Feature Extraction

for Media Curation.

Part of tools: T2-VS Video to Speech, T5-CT Contemporary Translation, T6-AF

Accessibility Framework, T7-AT Accessible.

Short description of the final module:

A wide range of features exists, and the first step taken was to collect, group, and

decide which features might be most interesting for further investigation.

However, possible features differ depending on the modality of the asset (textual,

visual, acoustic). We categorized the features into three fundamental types:

factual, contextual, and subjective information.

For this first deliverable, we focused on two specific features: smell extraction and

evoked emotion classification. We chose these, as they are so far less explored

than other features and at the same time have the ability to add great value to

the understanding of CH assets especially for visually impaired users.

Full description is part of D4.1(SEN) Chapter 2 (SHIFT-D4.1, 2023)

https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.4/manual/index.html
https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935
https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935

D5.1, System Architecture Page | 85

Technologies used

OS: Ubuntu, NixOS

Platform: Python 3, Poetry

Libraries: <not known yet>

Is containerized: no

Installation and configuration

e.g., pip requirements.txt

Produced data (Outputs)

Text

Consumed data. (Inputs)

Image, Text, Table

Asynchronous data exchange

N/A

APIs

<not specified yet>

Third-party libraries used

e.g., Hugging Face

User interface

Terminal

How to test the system

- Indirectly when testing other modules based on the models created.

- Acceptable UAR scores (defined depending on specific feature)

- Acceptable user satisfaction for each feature

5.8.12. M10-ASO MULTIMEDIA CULTURAL ASSET CURATION BASED

ON ASSOCIATION BY DESIGN

Provider: UAU

Work Package: WP4/T4.2: Multimedia Cultural Asset Curation Based on

Association by Design.

Part of tools: T1-IV Image to video, T6-AF Accessibility Framework, T7-AT

Accessible.

D5.1, System Architecture Page | 86

Short description of the final module:

This module will analyze, the features extracted in T4.1 to implement the

methodology of association by design for establishing the correlation between

cultural assets. More specifically, interlinking the cultural assets among

themselves, but also with external information. To that end, a harvesting

mechanism will be devised interoperating with a diversity of available APIs

provided by open sources using the extracted features of T4.1 as arguments, to

create multimedia cultural assets that are interlinked.

During the initial project phase, emphasis was placed on specifying ontological

aspects that facilitate more effective interaction with users.

For the first period, we focused on tangible CH. We crafted a first ontology based

on the data provided by the project partners. The created ontology is thought to

enable users to specify a painting based on various features, including Title, Artist,

Type, Style, Material, and Keywords. This initial version of the SHIFT ontology is

designed to accommodate future expansions by seamlessly integrating new

entities as they become available from the AI components of the platform.

Full description is part of D4.1(SEN) Chapter 3 (SHIFT-D4.1, 2023)

Technologies used

OS: Ubuntu, NixOS

Platform: Python 3, Poetry

Libraries: <not known yet>

Is containerized: no

Installation and configuration

e.g., pip requirements.txt

Produced data (Outputs)

Text

Consumed data. (Inputs)

Image, Text, Table

Asynchronous data exchange

N/A

APIs

<not known yet>

Third-party libraries used

e.g., Hugging Face

D5.1, System Architecture Page | 87

User interface

Terminal

How to test the system

- Indirectly when testing other modules.

- Knowledge graph fully defined

- Knowledge graph contains data from different partners

- Knowledge graph contains extracted features

D5.1, System Architecture Page | 88

5.8.13. M11-DRM DIGITAL RIGHT MANAGEMENT

Provider: QMUL

Work Package: WP4, T4.4: Digital Rights Management (DRM).

Short description of the final module:

The aim of the module is to enable traceability of the cultural assets for the

protection of digital rights on newly generated digital content by CHI using SHIFT

technologies. The implementation of the module will leverage on the existing

international standards such as media value chain ontology and other well-

established processes for implementing the traceability of the digital rights of

content that are shared and exchanged among the stakeholders.

A full description will be part of D4.2 (SHIFT-D4.2, 2024)

Technologies used:

OS: Linux, Windows

Platform: Java, Python3

Languages: Java, Python, OWL, SWRL

Source code available: No

Is containerized

N/A.

Installation and configuration

Module installation requires the execution of Java/Python components and the

associated traceability identifier of cultural assets.

Produced data (Outputs)

• For a given input cultural asset identifier, a list of users will be presented.

Data format: JSON.

Availability: when it is exposed by dependent modules.

Consumed data. (Inputs)

All the inputs which are considered by other modules.

Is asynchronous data exchange necessary:

Message queues will be established to trace the use of digital content.

APIs

D5.1, System Architecture Page | 89

N/A

Third-party libraries used

• Ontology schema repository

• Graph databases

User interface

• CLI (Java/Python script)

• Automated execution using Restful APIs

How to test the system

• The module evaluation will be carried out in compliance with the

international standards procedures and protocols as recommended by ISO

and other governing bodies.

• The usability aspects of the system will be validated by CHI representatives

within the consortium.

5.8.14. M12-PBK MAIN PLATFORM, BACKEND

Provider: SIMAVI

Work Package: WP5, T5.1: End-to-end Platform Architecture, Specifications and

Development lifecycle.

Part of tools: It is the backend hosting all the other tools.

Short description of the final module:

This module contains the main background elements used to offer basic

functionalities for data storage, data processing, and data exchange between

modules.

• Container management: Docker V19;

• Storage: Postgresql, MongoDB;

• Authentication: Oauth2 based on Keycloack;

• Asynchronous message processing: Kafka;

• Run time: Java Run Time 17

• API: REST API

• API documentation (OpenAPI) by Swagger

A full description will be part of D5.2 (SHIFT-D5.2, 2024)

Technologies used:

OS: Linux, Windows

Platform: JDK 18, Python 5

D5.1, System Architecture Page | 90

Languages: Java, Python

Source code available: Yes. Java, Python

Is containerized

Docker container.

Docker file available

100 MB image size based on Alpine.

Installation and configuration

Copy image file

Docker load <image file> tag <image name>

Docker run -d <image name>

Produced data (Outputs)

• List and description of foreground objects.

• List and description of background objects

Data format: JSON.

Availability: when it is exposed by dependent modules.

Consumed data. (Inputs)

All the inputs which are considered by other modules.

Is asynchronous data exchange necessary:

Yes, for uploading images.

APIs

GET fglist

GET bklist

GET object/{id}

GET objecttype/{id}

Third-party libraries used

Libraries: Spring, Kafka,

User interface

CLI is text-based, with commands calling the APIs.

Web-based (HTML, JS, Angular).

How to test the system

D5.1, System Architecture Page | 91

Use Postman to send API requests.

The tests conducted will be based on test scenarios and test cases defined in task

T5.3.

The tests will be considered as passed if all calls to APIs will return code 200 as

result code, and expected results defined in tests cases will be obtained.

5.8.15. M13-PFB MAIN PLATFORM CLIENT (WALLET)

Provider: SIMAVI

Work Package: WP5, T5.1: End-to-end Platform Architecture, Specifications and

Development lifecycle.

Part of tools: T1-IV Image to video, T2-VS Video to Speech.

Short description of the final module:

This module contains the main foreground functionalities able to present the final

users where the cultural assets are located, to display partial or complete

representation of the assets, and to guide the usage of special devices (haptic for

example) when necessary.

The module will be a web based UI, targeted to desktop/laptop or mobile

platforms.

The UI will be targeted to 5 user roles.(EU1-CH professional , EU2-VI Visually

impaired user, EU3-BL Blind user, EU4-HI Hearing impaired, EU5-Admin

Administrator)

A full description will be part of D5.2 (SHIFT-D5.2, 2024)

Technologies used:

OS: Linux, Windows, IOS, Android

Platform: JDK 18, Python 5

Languages: Java, Python, HTML5, JavaScript

Source code available: Yes. Java, Python

Is containerized: No

Installation and configuration

Installation from App Store, Google Store.

Produced data (Outputs)

• Representations on the display, or other output device

Availability: when it is exposed by dependent modules.

D5.1, System Architecture Page | 92

Consumed data. (Inputs)

All the inputs are considered by other modules.

Is asynchronous data exchange necessary:

Yes, for uploading images.

APIs

GET fglist

GET bklist

GET object/{id}

GET objecttype/{id}

Third-party libraries used

Libraries: Spring, Angular

User interface

CLI is text-based, with commands calling the APIs.

Web-based (HTML, JS, Angular).

How to test the system

Manual testing based on test cases.

The success criteria considered will have two components:

In the browser, placed in development mode, in the console there will be no errors

The user will be presented with the results defined in test cases.

5.8.16. M14-COM COMMUNICATION AND INTEGRATION PLATFORM

Provider: SIMAVI

Work Package: WP5, T5.2: Integration of the system components into the SHIFT

platform.

Part of tools: T1-IV Image to video, T2-VS Video to Speech.

Short description of the final module:

This module contains the main background elements used to offer basic

functionalities for data exchange between modules. Both synchronous and

asynchronous communication is considered.

• Asynchronous processing based on KAFKA

• Synchronous data exchange based on REST API.

A full description will be part of D5.2 (SHIFT-D5.2, 2024)

D5.1, System Architecture Page | 93

Technologies used:

OS: Linux, Windows

Platform: JDK 18, Python 5

Languages: Java, Python

Source code available: Yes. Java, Python

Is containerized

Docker container.

Docker file available

100 MB image size based on Alpine.

Installation and configuration

Copy image file

Docker load <image file> tag <image name>

Docker run -d <image name>

Produced data (Outputs)

JSON format for data requested.

Availability: when it is exposed by dependent modules.

Consumed data. (Inputs)

All the inputs are considered by other modules.

Is asynchronous data exchange necessary:

Yes, for uploading images.

APIs

GET fglist

GET bklist

GET object/{id}

GET objecttype/{id}

Third-party libraries used

Libraries: Spring, Kafka

User interface

None

D5.1, System Architecture Page | 94

How to test the system

Use Postman to send API requests.

The tests will check if any command returns 200 as the result code.

5.8.17. MAPPING BETWEEN TOOLS AND MODULES

In the previous chapter, we have described the available technical modules (Table

9 SHIFT List of Modules by Owner.). We are now presenting how the modules are

mapped on the tools required by each use case.

In the next table, each row represents a TOOL (T1, T7).

Each column numbered from 1 to 10 represents a Module listed in Table 7(Table

9 SHIFT List of Modules by Owner.) and described in the chapter Physical View

(5.8) For example, 1 represents Module M1-FOS Foreground/background object

segmentation, 2 represents Module M2-MOS Physics Informed Machine Learning

Algorithms and Video Generation, .. 10 represents Module M10-ASO Multimedia

Cultural Asset Curation Based on Association by Design.

Modules M11-DRM Digital Rights Management, M12-PBK Main Platform, backend,

M13-PFB Main platform client (Wallet), and M14-COM Communication and

Integration Platform are general usage modules, offering support for the other

functional modules, and are not placed in the table.

Table 10 SHIFT Tools – Modules mapping

Code Description 1 2 3 4 5 6 7 8 9 10

T1-IV Image

to video

Tool to enhance Photos /

Paintings to Short Videos

x x x x

T2-VS Video

to Speech

Audio tool capable of

interpreting visual stimuli (e.g.,

actions explained in visual

sequences)

 x x x

T3-HA

Haptic

Interaction

A tool that translates physical

objects to digital objects and

uses haptics to “feel” the

objects. To implement haptic

interaction with 3D digital

tangible and intangible cultural

heritage assets, augmenting

the user experience (UX) with

new interaction paradigms that

can be used in situ or remotely

x x

D5.1, System Architecture Page | 95

T4-AN Audio

Narrative

The tool automatically can

provide complementary

information regarding the

cultural heritage assets (books,

paintings, photos)

 x x x

T5-CT

Contempora

ry

Translation

A tool that translates historical

meaning into more

contemporary language and for

auto-tagging/ auto-

categorization of cultural

heritage resources.

 x x x x

T6-AF

Accessibility

Framework

Comprehensive intuitive and

accessible tool for all (including

individuals with disabilities)

multimodal storytelling of

cultural heritage assets.

 x x x x x x x

T7-AT

Accessible

Text-to-

Speech

Comprehensive intuitive and

accessible tool for all (including

individuals with disabilities)

multimodal storytelling of

cultural heritage assets.

 x x x x x

Modules are placed in the layered architecture in the Services block (Services M1-

M12).

Each layer contains the implementations of the concepts and is explained in this

subchapter.

D5.1, System Architecture Page | 96

Figure 19. Technology stack, full node

5.8.18. NODES

The nodes can have the following 5 components:

• Data Input Plugin. It is a tool elaborated especially for each site and is used

to get data from the site and present it to the Platform.

• Plugin DataStore. It has a storage system (File system RDBMS, or NOSQL),

An access to the storage via secured REST API

• Index Hash. It is a summary of data available on the site and in all the sites

having nodes linked in the P2P network

• Services. They are transformation and presentation services, developed in

the project and identified in the list of modules as M1-M12.

• P2P Network Component. It is a software implementing communication

protocols specific to Peer To Peer.

• HTTP Web services (API). They are REST or SOAP services used to expose

the data.

The components mandatory for each node are:

• Index Hash

• Services

• P2P Network Component

• HTTP Web services (API)

That means that we can have a node not linked to an existing system, but able to

expose data from other nodes, via the P2P link.

A Full node is created in the following way:

Step 1. Install the Docker engine.

Step 2. Download the Seed Node docker image.

Step 3. Create the Data Storage (manually install MongoDB, or create a file

system).

Step 4. Install data Access plugins. (manually, based on the individual installation

procedures).

Step 5. Install the procedures used to access data (M1-M12). .(manually, based

on the individual installation procedures)

Step 6. Place the node in P2P. The address of another node should be known.

Using this address, the network handshake procedure will be launched. The

procedure will publish the newly created node in the P2P network, and update the

node lists.

D5.1, System Architecture Page | 97

Step 7. Synchronize nodes. The procedure will copy on the newly created node all

indexes and hash contents (All simplified nodes).

Step 8. Create workspaces.

5.8.19. SEED NODE.

It is an important component used to generate a node. It contains all the

mechanisms used by a node. It can be used to initiate a full node, a simplified

node, or a knowledge node.

The Seed node is stored in a repository in the format of a Docker image.

The docker image is based on Ubuntu and contains the following preinstalled

elements:

• Java SDK 18

• Apache Tomee

• Postgres DB

• PostgREST

• Index Hash mechanism

• P2P Network Component

• HTTP Web services (API)

• Initial Block (hardcoded initial bloc, defined by an initial hash).

5.8.20. DATA STORAGE

Data Storage can be added to Full nodes. The data storage proposed is based on

a File system, or RDBMS (PostgreSQL) or NoSQL (MongoDB), and can store

structured and unstructured heterogeneous information.

Access to the Data Storage is possible using the specific plugins for specific sources

of data.

5.8.21. P2P

From an implementation perspective, the P2P network is composed of several

equal nodes, all connected, each node is a package of services with the following

functionality:

• Connection mechanism: used to link the node itself to the network.

• Discovery mechanism: used to find all the nodes in the network.

• List of all nodes.

• Communication protocol.

• Synchronization protocol.

• Data access protocol.

• Verification protocol.

D5.1, System Architecture Page | 98

The architectural pattern implemented is Microservices.

5.8.22. P2P DATA MESH

It is the data structure defined by several full nodes placed in a P2P network.

Figure 20. P2P data mesh

5.8.23. API

The APIs are exposing functionality for external clients to fully manage the Open

repository.

We are grouping the APIs into the following categories:

1. Node manipulation

a. Add node to the network

b. Node Configuration

c. Synchronize nodes

d. Detach a node

2. Data and knowledge storage and archiving:

a. Add data

b. Archive data

3. Data and knowledge retrieval and discovery:

a. Search for data

b. Get the data

c. Verify data validity

D5.1, System Architecture Page | 99

4. Data process

a. Call one or more of the M1-M12 modules

5. Statistics

a. Get the volume of data

b. Get the volume of usage

c. Get frequency of usage

6. Logs

a. Get logs for a period

An example of API is presented in the next figure (Figure 21. Node API):

Figure 21. Node API

5.9. Development View
We are presenting in this chapter the development view of the architecture. We

are referring to the technologies and tools used, and to the methodologies used

for development and deployment.

D5.1, System Architecture Page | 100

5.9.1.CI/CD

The development and deployment are governed by the Continuous

Integration/Continuous Deployment paradigm. The description of the process,

with responsibilities and schedule is presented in the next figure (Figure 22.

CI/CD)

Figure 22. CI/CD

In detail, the steps are presented in the next figure (Figure 23. Development and

deployment flow)

1.1 Enter the code (edit) using an IDE (IDEA, NetBeans, PYChaRM, Visual Studio)

1.2 Place the code in the GitLab repository (Commit)

1.3 Merge changes

1.4 Build the process (maven, Gradle, npm)

1.5 Run scripts

1.6 Inspect the code (IDEA, Sonar Cube)

2. Take components from a repository (maven, GitLab, Apache)

3. Take the plugins if available (database drivers, libraries)

4. Place and edit configuration files

D5.1, System Architecture Page | 101

5. Unit tests

6. Place the results/issues in Jira (Issue management system)

7. Link and call available web services

8. Build the whole system (call Gitlab pipeline)

9. Run integration tests

10. Deploy one node

11. Run the node on the pilot site

Figure 23. Development and deployment flow

5.9.2.TECHNOLOGIES

D5.1, System Architecture Page | 102

We are mentioning here the technologies used, with a short description of their

role and functionality. For details of each technology used, we are indicating the

references.

5.9.2.1. P2P

“The term peer-to-peer, or P2P, means that the computers that participate in the

network are peers to each other, that they are all equal, that there are no “special”

nodes, and that all nodes share the burden of providing network services. The

network nodes interconnect in a mesh network with a “flat” topology. There is no

server, no centralized service, and no hierarchy within the network. Nodes in a

P2P network both provide and consume services at the same time with reciprocity

acting as the incentive for participation. P2P networks are inherently resilient,

decentralized, and open. A preeminent example of a P2P network architecture was

the early internet itself, where nodes on the IP network were equal. Today’s

Internet architecture is more hierarchical, but the Internet Protocol still retains its

flat-topology essence.” (Antonopoulos, 2017)

Network discovery

When a new node boots up, it must discover other P2P nodes on the network to

participate. To start this process, a new node must discover at least one existing

node on the network and connect to it.

The geographic location of other nodes is irrelevant; the network topology is not

geographically defined. Therefore, any existing P2P nodes can be selected at

random.

To connect to a known peer, nodes establish a TCP connection, usually to port

68444 (the port generally known as the one used by SHIFT), or an alternative port

if one is provided. Upon establishing a connection, the node will start a

“handshake” by transmitting a version message, which contains basic identifying

information.

5.9.2.2. SUMMARY DATA

Summary data is the normalization, indexing, and hashing of existing data in a

site, created in such a manner that, it offers quick data retrieval, and presents

uniformly the data to the processes implemented in modules M1-M12.

Summary data is created for bunches of real data no larger than an established

amount (for example 10 MB). If real data is larger then it is split into chunks.

5.9.2.3. BLOCKS

A block is the full representation of one version of a data summary from a site.

The block is made of a header, containing metadata, followed by a list of summary

data versions that make up the bulk of its size. The block header is 80 bytes,

D5.1, System Architecture Page | 103

whereas the average summary data is at least 256 bytes, and the average block

is expected to contain about 10 summary data.

The proposed structure of a block is:

• 4 bytes Block Size The size of the block, in bytes, following this field.

• 80 bytes Block Header Several fields form the block header (see below).

• 1-9 bytes (VarInt) Transaction Counter How many workspace versions

follow.

• Variable Workspaces The versions of workspaces recorded in this block.

5.9.2.4. BLOCK HEADERS (ANTONOPOULOS, 2017)

The block header consists of the following information: Description.

• 4 bytes Version A version number to track software/protocol upgrades.

• 32 bytes Previous Block Hash A reference to the hash of the previous

(parent) block in the chain.

• 32 bytes Merkle Root A hash of the root of the Merkle tree of this block’s

workspaces.

• 4 bytes Timestamp The approximate creation time of this block (seconds

from Unix Epoch).

• 8 bytes. Reserved

5.9.2.5. BLOCK IDENTIFIERS - BLOCK HEADER HASH AND BLOCK HEIGHT

The primary identifier of a block is its cryptographic hash, a digital fingerprint,

made by hashing the block header twice through the SHA256 algorithm.

The resulting 32-byte hash is called the block hash, but is more accurately the

block header hash, as only the block header is used to compute it.

The block hash identifies a block uniquely and unambiguously and can be

independently derived by any node by simply hashing the block header.

Note that the block hash is not actually included inside the block’s data structure,

neither when the block is transmitted on the network, nor when it is stored on a

node’s persistence storage as part of the node. Instead, the block’s hash is

computed by each node as the block is received from the network. The block hash

may be stored in a separate database table as part of the block’s metadata, to

facilitate indexing and faster retrieval of blocks from disk.

A second way to identify a block is by its position in the blockchain, called the

block height. The first block ever created is at block height 0 (zero)

5.9.2.6. MERKLE TREES

“A Merkle tree, also known as a binary hash tree, is a data structure used for efficiently

summarizing and verifying the integrity of large sets of data. Merkle trees are

binary trees containing cryptographic hashes.

D5.1, System Architecture Page | 104

The term “tree” is used in computer science to describe a branching data structure,

but these trees are usually displayed upside down with the “root” at the top and

the “leaves” at the bottom of a diagram.” (Antonopoulos, 2017)

5.9.2.7. BLOOM FILTERS (ANTONOPOULOS, 2017)

A bloom filter is a probabilistic search filter, a way to describe a desired pattern

without specifying it exactly. Bloom filters offer an efficient way to express a

search pattern while protecting privacy. They are used to asking their peers for

data matching a specific pattern, without revealing exactly which addresses they

are searching for.

5.9.2.8. NODES

A node implements all the elements necessary for the Platform to manage the

summary data on all sites, to call the processes implemented by modules (M1-

m12), and to manage the links to raw data on the sites. It can work in standalone

mode too. In other words, the minimum implementation of the Platform is one

node where there is summary information, and links to data on the site and also

to the output of the processes (M1-M12) implemented.

The five elements of a full node are:

• Data Store. Is the place where all data is stored. Typically, it is a Mongo DB

database, with multimodal content.

• Index and hash. Is a file structure containing all the blocks created on the

data from the data store. It is a tree structure of blocks.

• Processes. It is a group of modules, which can be run on the data from the

data Store. The implementation resides in modules M1-M12.

• P2P component. It is a microservice used to search for, discover, and link

to other nodes.

• API. It is a microservice exposing functionality for Open repository clients.

It is REST API.

5.9.2.9. INITIAL NODE

It is a node used to initialize any node in the system. It is part of the Seed Node.

The content is hardcoded and contains:

• 4 bytes Block Size The size of the block, in bytes, following this field.

Hardcoded 128).

• 80 bytes Block Header Several fields form the block header (see below).

• 2 bytes (VarInt) value 0.

• The predefined hash of the seed block (32 bytes)

• 14 bytes Reserved.

The Block header has the content:

• 4 bytes Version A version value 01.

D5.1, System Architecture Page | 105

• 32 bytes Previous Block Hash A reference to the hash of the previous

(parent) block in the chain. It has the value 0 (no previous block)

• 32 bytes Merkle Root A hash of the root of the Merkle tree of this block’s

workspaces. The 32 bytes of the predefined seed node hash.

• 4 bytes Timestamp The approximate creation time of this block (seconds

from Unix Epoch).

• 8 bytes. Reserved

5.9.2.10. P2P COMPONENT OF A NODE.

This component is mandatory for all nodes. It has two main elements:

• The list and addresses of all the other nodes in the P2P network. It is used

when nodes are added or removed, or when data synchronization is

necessary.

• A microservice is used to search for and discover data and knowledge.

5.9.2.11. PLUGINS

Plugins are used to access data from heterogeneous systems and to make them

available in the processes implemented in a node.

A plugin will be developed for each site and is specific to the site.

5.9.3.TOOLS

In the development phase, we will use the following tools and technologies, as

presented in the next diagram (Figure 24. Technology stack, development)

• Operating systems:

o Linux Ubuntu 20 for development server

o Windows 11 for local development environments

• Languages:

o Java 18

o Python 3

• Databases

o PostgreSQL

o MongoDB

• Indexing and search mechanism

o ElasticStack

• Web servers:

o Apache Tomcat, Apache Tomee

• Container management

o Docker

o Docker compose

• Communication protocols

o HTTP, HTTPS

• Services

D5.1, System Architecture Page | 106

o Web Soap

o Web REST

• Authentication, Authorization, Identity, and Access management

o Keycloack

• IDEA

o IntelliJ IDEA

o Apache Netbeans

o PyCharm

o Visual Studio

o Jupiter

• Libraries, frameworks

o Spring

o Springboot

Figure 24. Technology stack, development

D5.1, System Architecture Page | 107

6. Conclusion
After an introductory part considering the methodologies used, we have presented in

the document the project’s technical requirements and the proposed End-To-End

Platform Architecture.

The system is described in terms of 7 tools implementing the functionalities of 10

specific and 4 general business modules. The tools, the modules, and the map

tools/modules or tools/use-cases are described.

The End-To-End Platform Architecture is based on the Data Mesh concept defined in

Chapter 4.2. and to be implemented in a distributed system around a Peer-to-peer

(P2P) network.

The system will place business modules on a backend platform. The main physical

elements of the Platform backend are Nodes. A node offers data storage, retrieval,

validation, collaboration, governance, and distribution functionality. Nodes can be

added or removed at any moment from the system and also can work in standalone

mode. Each node contains the business main entities grouped in workspaces.

This is the basis for the development of an entire ecosystem that offers cultural

heritage institutions the necessary impetus to stimulate growth and embrace the

latest technical innovations.

All the data or knowledge is exposed via APIs, presented at the level of each node.

Some of the modules offer themselves specific data representations (for example 3D,

haptic, and video interfaces).

The architecture of the whole system is defined to allow the fulfillment of the

objectives of the project and validate this on the use cases defined.

The document will be used as input for the development of the whole system,

especially the tools in WP3 and WP4, and the integration mechanisms in WP5.

Possible changes in the technical requirements or system architecture, after the

interaction with the other WPs, will be reflected in D5.2 – Integration and functional

testing, D5.3 Pilots evaluation strategy plan, and D5.4 Pilots final report.

 Page | 108

References
Antonopoulos, A. M. (2017). Mastering Bitcoin. - Programming the Open Blockchain. O’Reilly Media, Inc.

Data-Mesh-General. (2023). Retrieved from Data-Mesh: https://martinfowler.com/articles/data-mesh-

principles.html

Dehghani, Z. (2022). Data Mesh: Delivering Data-Driven Value at Scale. O'Reilly Media.

Jacek Majchrzak, S. B. (2022). Data Mesh in Action. Manning .

Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable,

and Maintainable Systems. O'Reilly Media.

Kruchten, P. (1995). Architectural Blueprints—The “4+1” View. IEEE Software 12 (6), 42-50.

MatCHMaker. (2023). D5.1 Technical specifications of the Open Repository. HORIZON-CL4-2022-

RESILIENCE-01-19.

MES-CoBraD. (2021). D7.1 System requirements & architecture. MES-CoBraD project.

Nick Rozanski, E. W. (2005). Software Systems Architecture: Working with Stakeholders Using Viewpoints

and Perspectives. Addison-Wesley Professional.

Per Kroll, P. K. (2003). The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP: A

Practitioner's Guide to the RUP. Addison-Wesley Professional.

Richards, M. (2015). Software Architecture Patterns. O'Reilly Media, Inc.

SHIFT Consortium. (2022). DOA-SHIFT. Bruxelles.

SHIFT-D1.1. (2023). D1.1 - SHIFT requirements, user evaluation.

SHIFT-D2.1. (2023). Automatic generation of motion sequences. SHIFT Consortia.

SHIFT-D3.1. (2023). Tool for the textual representation of CH. SHIFT Consortiu.

SHIFT-D3.2. (2023). Text and video to affective speech synthesis. SHIFT Consortia.

SHIFT-D3.3. (2023). Haptic based interaction with CH assets. SHIFT Consortia.

SHIFT-D3.4. (2024). Accessible framework of inclusive museum. SHIFT Consortia.

SHIFT-D4.1. (2023). Tools for Cultural Asset Curation and. SHIFT Consortia.

D5.1, System Architecture Page | 109

SHIFT-D4.2. (2024). Distribution SHIFT Curation Repository for Cultural Assets with DRM capabilities.

SHIFT Consortia.

SHIFT-D5.2. (2024). Integration and functional testing. SHIFT Consortia.

SIMAVI. (2021). QA-Procedures and Work Instructions (In Romanian). Bucharest, Romania.

D5.1, System Architecture Page | 110

The Members of the SHIFT Consortium:

Organizations Country Role

SIMAVI - SOFTWARE IMAGINATION & VISION Romania Coordinator

FORTH - IDRYMA TECHNOLOGIAS KAI EREVNAS Greece Partner

MDS - MASSIVE DYNAMIC SWEDEN AB Sweden Partner

AUD - audEERING GmbH Germany Partner

UAU - UNIVERSITAET AUGSBURG Germany Partner

SOMKL - MAGYAR NEMZETI MÚZEUM – SEMMELWEIS

ORVOSTÖRTÉNETI MÚZEUM

Hungary Partner

ANBPR - THE NATIONAL ASSOCIATION OF LIBRARIANS AND

PUBLIC LIBRARIES IN ROMANIA

Romania Partner

SPK - STIFTUNG PREUSSISCHER KULTURBESITZ Germany Partner

BMN - THE BALKAN MUSEUM NETWORK Bosnia and

Herzegovina

Partner

HERITAGE - HERITAGE MANAGEMENT Greece Partner

ERC - ETICAS RESEARCH AND CONSULTING Spain Partner

DBSV - GERMAN FEDERATION OF THE BLIND AND PARTIALLY

SIGHTED

Germany Partner

QMUL - QUEEN MARY UNIVERSITY OF LONDON United

Kingdom

Associated

Partner

Contact:

Project Coordinator: Purcarea Razvan

SIMAVI- SOFTWARE IMAGINATION & VISION

razvan.purcarea@simavi.ro

Disclaimer:

Funded by the European Union. Views and opinions expressed are however those of

the author(s) only and do not necessarily reflect those of the European Union or REA.

Neither the European Union nor the granting authority can be held responsible for

them.

mailto:razvan.purcarea@simavi.ro

